Ares: A framework for quantifying
the resilience of deep neural networks

Brandon Reagen, Udit Gupta, Lillian Pentecost, Paul Whatmough
Sae Kyu Lee, Niamh Mulholland, David Brooks, Gu-Yeon Wei

Harvard University

ABSTRACT

As the use of deep neural networks continues to grow, so does the
fraction of compute cycles devoted to their execution. This has led
the CAD and architecture communities to devote considerable at-
tention to building DNN hardware. Despite these efforts, the fault
tolerance of DNNSs has generally been overlooked. This paper is the
first to conduct a large-scale, empirical study of DNN resilience. Mo-
tivated by the inherent algorithmic resilience of DNNs, we are inter-
ested in understanding the relationship between fault rate and model
accuracy. To do so, we present Ares: a light-weight, DNN-specific
fault injection framework validated within 12% of real hardware.
We find that DNN fault tolerance varies by orders of magnitude with
respect to model, layer type, and structure.

ACM Reference Format:

Brandon Reagen, Udit Gupta, Lillian Pentecost, Paul Whatmough
and Sae Kyu Lee, Niamh Mulholland, David Brooks, Gu-Yeon Wei. 2018.
Ares: A framework for quantifying the resilience of deep neural networks. In
DAC ’18: DAC ’18:The 55th Annual Design Automation Conference 2018,
June 24-29, 2018, San Francisco, CA, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3195970.3196083

1 INTRODUCTION

Today, deep neural networks (DNNs) are being deployed at all
computing scales—from energy-constrained IoT devices to TCO-
optimized data centers. Given the complexity and growing scale of
DNN deployment, work has mainly focused on optimizing perfor-
mance and energy efficiency. This paper explores and quantifies the
inherent resilience of DNNs to hardware-level faults, opening up
new directions for design and optimization strategies.

Hardware is not perfect, but conventional computing systems
typically require near-perfect execution to guarantee correctness.
These systems are brittle and typically require fault rates on the
order of 10713 [1]. This level of correctness levies a high design cost
at both the device and microarchitecture levels. However, relaxing
these requirements can enable significant savings, and DNNs are
known to be far more fault tolerant than conventional workloads
(e.g., 1074 [2]).

Ample opportunities to improve performance and efficiency are
possible if the requirements for absolute correctness can be relaxed.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

DAC 18, June 24-29, 2018, San Francisco, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5700-5/18/06. .. $15.00
https://doi.org/10.1145/3195970.3195997

These opportunities motivate us to thoroughly understand the extent
of resilience in order to safely push the limits of DNN hardware
from architectures to devices. At the architecture level, conventional
devices can be pushed to their operational limits by increasing clock
frequency to boost performance or reducing V,;,; to maximize energy
efficiency. DNNs require substantial amounts of memory to store
weights and intermediate values. While modern high-density storage
solutions, e.g., flash memories, require expensive redundancy and
error correction hardware, such costly safeguards may be overkill
for DNNs. At the device level, many emerging technologies promise
high efficiency but have seen little adoption due to their instability
and poor yield. At the fab level, design rules may be aggressively
pushed to maximize densities at the expense of reliability.

In this paper, we present a DNN-specific fault injection frame-
work: Ares. Ares studies faults at the application level and enables us
to execute DNNs directly on GPUs, which is necessary for conduct-
ing large-scale fault studies. Traditional fault injection frameworks
based on dynamic instrumentation can experience kernel slowdowns
of up to 488 [3], making them prohibitively slow to sweep many
fault patterns across a range of fault rates that vary by orders of
magnitude. Ares is an accurate, first-order design space exploration
framework that can guide lower-level tools on where to conduct
detailed microarchitectural fault analysis. Additionally, this paper’s
characterization of fault tolerance at the application level can be
broadly applied across a range of devices and architectures that run
DNNSs. This is vital because DNNs run on CPUs, GPUs, and accel-
erators, and the optimal microarchitecture for each DNN hardware
device is still widely debated.

This paper makes the following contributions:

e We develop Ares to be a fast, scalable fault injection frame-
work that enables rapid fault analysis of fully connected (FC),
convolutional (CNN), and gated recurrent unit (GRU) based
DNN:s. Ares has been validated to be within 12% of a fabri-
cated DNN accelerator [4].

e DNNSs offer varying opportunities for optimization as model-
specific, more-aggressive data types can provide 10x more
resilience and fault tolerance can vary across models by sev-
eral orders of magnitude.

e Abundant optimization opportunities exist when considering

faults at a finer, per-layer granularity. Within a DNN, the per-

layer fault tolerance can vary by up to 2781 x. We also find
that increases in fault rate translate to graceful degradation in
accuracy for FC and GRU layers, and less so for CNN layers.

We find that the different structures of DNNs (i.e., weights,

activations, and hidden state) also exhibit different fault tol-

erance behaviors. Experiments show that the activations of a

model can be up to 50x more resilient than the weights.

2 BACKGROUND

Deep Learning: Deep learning is a field of machine learning that
leverages large neural networks to tackle challenging classification
and regression tasks. DNNs have two operating modes: training and
inference. Training is the process of fitting neural network param-
eters (weights) to labeled data. Inference is the process of using a
previously trained DNN to predict labels for new input data. We can
characterize the accuracy of trained models by performing inference
on a particular set of previously unseen inputs. For the purposes of
our study, we assume training is a large, one-time cost that has been
performed in a fault-free environment. Trained models are deployed
and used repeatedly, so we focus on the execution of inference.

For a more thorough discussion of deep learning, see [5].

Algorithmic Resilience of DNNs: Previous work from the ma-
chine learning community suggests DNNs can be robust to faults.
It has been shown that eliminating individual nodes or parameters
leads to a graceful degradation in model accuracy [6]. Furthermore,
many regularization techniques can also be seen as a form of DNN
robustness because correct operation requires only a fraction of the
original weights. The ability to operate correctly with perturbed
parameters is further supported by the large corpus of work in sim-
plifying over-parameterized DNNs [7]. However, in these cases,
individual weights or even whole neurons are removed, which is
not how faults typically manifest in hardware. Instead, this paper
explores bit-level fault tolerance of DNNs.

The hardware community has also shown interest in understand-
ing DNN fault tolerance. For automotive applications, transient faults
can lead to problematic image misclassifications; in order to meet
ISO standards, techniques to improve reliability are required [8].
In [9], it is shown that multiple circuit faults can be circumvented
with retraining in neural networks that have dozens of parameters.
Finally, Minerva [2] proposes fault mitigation techniques to reduce
SRAM supply voltage in order to save energy while preserving
inference accuracy in fully connected DNNs.

3 THE ARES FRAMEWORK

In this section, we review fault types and sources, present Ares, and
validate it against a fabricated DNN accelerator.

3.1 Faults and DNNs

Hardware Faults: Hardware designers have been forced to consider
hardware reliability since the inception of the field [10]. There are
many sources of faults in modern semiconductor chips and storage
media. Manufacturing process variation, voltage noise, and tempera-
ture all contribute to unpredictable circuit delays that force designers
to use worst-case margins. Any attempts to minimize these wasteful
margins by recovering performance or power efficiency risk the oc-
currence of timing violation faults under certain operating conditions.
SRAM circuits are also exposed to large delay variation because
they use smaller devices than logic cells, and there are a vast number
of cells on each chip, which increases the chance of an outlier. Sim-
ilarly, heavily-scaled DRAM and flash memory cells now store so
few electrons to encode each bit that they are occasionally flipped by
common noise events. Cosmic particle strikes are a concern for some
applications, as in datacenters, because they result in single-event

Construction Time

User Defined Fault Models

|
|
I
I
I
I
I
—— 1
1
: Activation Fault Model
1
: State Fault Model
1
l

[staer

Figure 1: An illustration of the Ares fault injection (FI) framework ap-
plied to an example DNN (TiGRU).

upsets. Datapaths can also fault when operating conditions introduce
excess delay.

This paper focuses on static faults in memory, which are perti-
nent to DNNSs due to the large storage requirement for weights and
intermediate states. Faults can be further classified into transient
and static varieties. Transient faults come and go over time and are
caused by abnormal conditions or events (e.g., resonant supply volt-
age noise and particle strikes). Static faults persist in the affected
device and occur in cases such as “weak” SRAM bit cells due to
process variation or flash life-time wear problems. Because static
fault persist in time, we see them as a superset of transient faults,
and studying their effects first provides a lower bound on DNN fault
tolerance.

DNN Fault Points: At the algorithmic level, a DNN has four
major sources of faults. Within DNN inference, there exist three
sources of memory consumption where faults can occur: weights,
activities, and hidden states. Faults can also occur in the datapath,
which is dominated by MAC units in the case of DNNGs. In this paper,
we consider memory faults in all three memory fault points. Ares
could be extended to study datapath faults, as all inputs and outputs
to MAC units are weights, activities, and hidden states. A fault model
for a MAC unit can be derived from appropriately manipulating the
data before and after MAC units.

3.2 The Ares fault injection framework

Given a DNN, Ares establishes a baseline classification error by
executing inference with floating point data types for all structures.
Next, structures are quantized to the desired fixed point representa-
tion and the model is re-executed. For the purposes of this paper, we
do not quantize models beyond the point of accuracy loss; we use
the minimal fixed point type where no accuracy loss was observed.

Ares has two modes of fault injection: static and dynamic. Static
faults are injected off-line, before the inference is executed. Injecting
faults statically is preferred as it introduces no performance overhead.
Dynamic faults are injected during the execution of a DNN inference.
In Ares, the overheads of dynamic fault injection are minimized by

Table 1: Input dimensions vary for each dataset: MNIST and CiFar-10 are 2D pixel arrays, ImageNet is 3D with RGB channels, and TIDIGITS is a
time series with 2D input: the number of features per timestep by the timesteps per series. Data type is the minimum number of bits required without

increasing error (notation is number of <integer.fraction> bits).

| Model Name LeNetFC | LeNetCNN [CF-VGG | VGG16 | ResNet50 [TiGRU |
Dataset MNIST MNIST CiFar10 ImageNet ImageNet | TIDIGITS
Layers 3 4 12 16 54 3
Input Dimensions 28x28 28%28 3232 | 224%x224x3 | 224x224x3 | 39x254
Output Classes 10 10 10 1000 1000 10
Total FC Weights 270K 9.5K 270K 120M 2M 10M
Total CNN Weights - 590K 7.6M I5SM 23M -
Total GRU Weights - - - - - 143K
Total Activations 410 45K 250K 15SM 10M 200K
Classification Error 1.68 % 0.9 % 10.17 % 35 % 31 % 3.6 %
Weights Data Type 2.6 2.8 2.10 2.10 3.13 2.12
Activation Data Type 53 4.5 3.12 13.4 7.6 44
using native tensor operations to emulate fault behavior. So long as = 15
the fault model under study can be cast as an element-wise operation = = Ares
(e.g., a bit flip in a matrix) or a linear transformation of the state § ® Silicon measurements
(e.g., random or systematic noise), it can be implemented as a tensor i 10
operation and run on a GPU. S
Ares performs fault injection at designated points across the 2
weights, activations, and hidden states, depending on the DNN topol- .E 5
ogy and planned experiment. Each fault injection experiment re- a
quires the bit error rate and faulty structures to be specified. Fault 8 0 e

patterns are generated by sampling a uniformly random distributed
process, which identifies which bits will fault in each structure. Ares
models faults on memory structures in DNNs using bit-level fault
injection to mutate values. By sweeping fault rates, the user can then
analyze the fault tolerance of the DNN.

To further illustrate how Ares performs fault injection, Figure 1
lays out the network topology and fault injection points for TiGRU:
a three layer DNN with one GRU and two FC layers. Ares is built
on top of Keras [11], which takes high-level DNN descriptions
specified in Python and executes them using either Theano [12]
or TensorFlow [13] back ends. All Ares operations rely on Keras
operators, which are compatible with both Theano and TensorFlow.

Fault injection is performed at two stages: construction time
(static injection) and evaluation time (dynamic injection). Once
the DNN is trained, the weights are known, and Ares injects weight
faults at construction time by manipulating saved weights outside of
Keras. In contrast, activations and hidden states are input-dependent,
dynamic values. Injecting faults into these units requires changes to
the Keras inference computation. Activation and state fault injection
operators are implemented as GPU-compatible element-wise tensor
operations. For GRU layers, we inject faults into hidden states at
each time step between state updates. The network is then evaluated
in the configured fault environment. We find the maximum slow
down from injecting dynamic faults is less than 3.5x.

3.3 Silicon validation

To demonstrate that Ares accurately captures the bit error behavior
exhibited by real hardware, we validated simulation results with
measurements using a fabricated DNN accelerator capable of in-
ducing and measuring SRAM faults [4]. The model used for the
validation is the same used in the original publication: a three layer,

1074 1073
Bit Error Rate
Figure 2: Validation plot comparing Ares and silicon measurements

of [4] with an average error of 12%.

1073

256 neuron-per-layer fully-connected DNN trained with MNIST.
For silicon measurements, we sweep the scratchpad SRAM V,,; to
control the BER for the weight storage. For each V,;; point, we run
the entire test set to get the classification error along with the BER
statistics captured by on-chip counters. Bit errors only affect the
weights SRAM; the input, output, and intermediate activation data
is unaffected. In Ares’ simulation, the low-voltage SRAM bit errors
are modeled as a uniformly distributed random process using the
average BER statistics from each measured V,;; point, and we run
the full test set to measure the equivalent simulated classification
error at the same BER. Figure 2 shows the BER versus classification
error curves for Ares simulation and silicon measurement.

4 RESULTS

In this section, we use Ares to quantify the relationship between
faults and accuracy in deep neural networks. We begin by presenting
six DNNs that will be used in each section of the evaluation. In
Section 4.2, faults are injected into the weights of each model to
study how tolerance varies at the model level. Then Section 4.3
investigates injecting faults into weights one layer at a time. Finally,
in Section 4.4, we compare fault tolerance across structures (i.e.,
weights, activities, and hidden states). All results show more than
an order of magnitude variance of fault tolerance across models,
between layers of models, and across structures. Hence, Ares en-
ables significant exploration of optimizations by leveraging different
aspects of resilience to faults.

—
(=]
S

—0313
—Q26

~
W

Classification Error (%)
W
<)

—0313
— 0210

B
(=)

—
(=]
S

—0313
—0238

-
W

Classification Error (%)
Wi
S

—0313

IS
(e

—_
(=l
(=}

~
W

—0313

Classification Error (%)
N
S

—0313
—0212

N
W

25 25 25
. — 0210
0= -7 : L5 -3 —1 0= -7 ";5 -3 —1 0 =5 ;7l =5 -3 —1
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Bit Error Rate Bit Error Rate Bit Error Rate
(a) LeNetFC (b) LeNetCNN (c) CiFAR10

— —_ __100
S 100 S 100 S
5 5 s 75
5 80 5 80 5
£ g g 50
= 60 3 60 =
Q Q Q
©] O |©]

10°° 107 10° 1073 107!
Bit Error Rate
(d) VGG16

102 107 10° 103 107!
Bit Error Rate
(e) ResNet50

1077 1075 1073 107!
Bit Error Rate
(f) TiGRU

—
?O
©

Figure 3: Bit error rate (BER) sensitivities when faults are injected in all the weights of each network. Vertical dashed lines indicate the highest BER
at which there is no increase in classification error relative to the model’s baseline accuracy.

4.1 Models

We have assembled a collection of six diverse DNN models to use
with Ares. The datasets used to train our networks are representa-
tive of major application domains in which DNNs are commonly
used: image classification (CiFar-10, MNIST, ImageNet) and speech
classification (TIDIGITS). The datasets have varying sizes and the
chosen models vary greatly in depth and composition. An overview
of the models used is given in Table 1. For larger networks, we
group clusters of similar, adjacent layers into layer blocks (LBs),
which increases the interpretability and eases the organization when
studying the deepest models.

4.2 Model-wise fault sensitivity

Starting at model granularity, we simulate the impact of bit errors
by injecting faults across all the weights in each model. Figure 3
shows the resulting BER-accuracy curves, and the dashed vertical
lines indicate the highest tolerable BER without loss of inference
accuracy. The two vertical lines show two quantized types for each
model: one using only the minimum number of bits required to
run inferences without loss of accuracy (blue) and the other (red) a
global type that is described below.

All models show heavily thresholded accuracy degradation: small
BERs have a negligible impact on accuracy up to a certain threshold
point. At BERs beyond this point, model accuracy degrades expo-
nentially. The point of 0% accuracy loss is consistently orders of
magnitude lower than the knee in the curve. Between these points,
the curves typically exhibit a gradual decline in accuracy. Depending
on the application, this could be a particularly interesting operat-
ing regime for devices that can tolerate some loss in accuracy in
exchange for efficiency gains.

Resilience varies across DNNs. Across all models, we see a
large spread in fault sensitivity; depending on the model and data
type, the knee of the BER-accuracy curve can vary by multiple or-
ders of magnitude. Considering the unified data type for all models,
we see that the 0% accuracy loss can vary from 4 x 10~° (VGG16)
to 6 x 10~° (LeNetCNN). These results suggest protection mecha-
nisms and optimizations used (e.g., ECC level and optimal voltage
reduction) should be engineered on a per-model basis.

Weight quantization impacts resilience. To improve efficiency,
DNNSs are quantized to minimize the total number of bits. We study
weight fault tolerance with two data types for each network: a uni-
fied Q0313 (i.e., 3 integer and 13 fractional bits) and a per-model
optimized type. Q3 13 is used as it is the minimal type needed for no
loss of accuracy across all models, with ResNet50 requiring the most
bits. While a single global type would be needed to build flexible
hardware that supports all models, model-specific types are the most
aggressive quantizations each DNN can use without any increase to
the baseline error.

Figure 3 shows that the Q3 13 type (red) consistently results in
less resilience than the model-specific types (blue). In the case of
LeNetFC, the optimized Q; ¢ data type is 10x more fault tolerant.
This is because the number of integer bits used (3 versus 2) de-
termines the range of representable values, and models other than
ResNet50 can be clipped to just 2 integer bits with no loss in ac-
curacy. The unnecessarily larger range of possible values allows
for faults of greater magnitude to occur, and hence increases the
potential impact of a fault (e.g., flipping the MSB of a near-zero
valued weight results in a greater change in value if 3 integer bits are
used rather than 2). The effect of bit flips in superfluous fractional
bits is not as strong. By reducing the number of integer bits from 3 to
2, model-specific quantizations consistently demonstrate increased
fault tolerance.

w
o
w
o

FC-2

N
o

2.5

g
)

Classification Error (%)
Classification Error (%)

I
wn

w
o

FC-3

0% | ayer percentiles

N

n
=
<

=
15}

N
o
Bit Error Rate

Classification Error (%)

=
5]

1.5

—iii

10 10° 10" 107 10 10° 10
Bit Error Rate Bit Error Rate

-
2,

,_.
2

107 10°¢ 10° 10*
Bit Error Rate

o o o
b4 £ b4
—
]

Figure 4: Per-layer LeNetFC BER vs. classification error curves (and how per-layer bar charts are derived from such curves).

10°F
10 F
1072}

LeNetFC LeNetCNN

Bit Error Rate

~N ™M —
h " ' h f

O O zZ 2 0
[=z =z o
O O

o~ <t

o O
—4 o

FC-2

VGG16 ResNet50 TiGRU

SR I 5 9o
m O O O Z m o O 2 0O 0O
o O

Figure 5: Per layer fault tolerance for all models. Gray bar corresponds to highest BER at which there is no measured increase in classification error.
Red ticks correspond to the maximum BER for 0%, 1%, 5%, and 10% accuracy loss respectively.

Persistent class misprediction. We found the variance of the
distribution of test-case mispredictions (i.e., the number of mis-
predictions for each class at a sampled fault pattern) is positively
correlated with classification error. While fault patterns with high
per-class misprediction variance are outliers, it can skew the average
classification error. In LeNetCNN, 100 samples at a fault rate of
1 x 1073 resulted in an average error of 12.2% while the median
was only 6.8%. There are two ways a network can exhibit high class-
misprediction variance: one class can constantly be misclassified
or half the classes tend to be wrong and half correct. We found the
latter case had a greater effect on model classification error.

4.3 Per-layer sensitivity

We now explore weight faults on a per-layer basis to further investi-
gate fault sensitivities. By experimenting at per-layer granularity, we
are able to understand which layers are the most resilient to faults
and offer the most opportunity for hardware design optimizations.

4.3.1 LeNetFC layer fault tolerance. Figure 4 shows the per-layer
BER-accuracy curves for LeNetFC. Each experiment consists of 150
different randomly sampled fault patterns at each BER. The red line
indicates the mean of the sampled patterns and the blue band shows
one standard deviation from the mean. At the bottom of each layer’s
results a horizontal gray bar highlights the maximum tolerable fault
rate with zero increase in model error. The four red markers after the
bar indicate the maximum fault rate with 0% (redundant with the
gray bar), 1%, 5%, and 10% increase in classification error relative
to the baseline error given in Table 1. The data is summarized in the
bar chart to the right to clearly compare layer fault tolerances both
within and across models (see Figure 5).

LeNetFC FC-3 shows distinct stepped levels. This is because FC-
3 only has one thousand weights, which gives rise to discrete steps

in the expected number of classification errors as the BER reaches
thresholds at which one additional bit, on average, is flipped.

4.3.2 Layer sensitivities across models. Figure 5 shows the results
of repeating the per-layer experiment for all models. Each bar and
set of markers is constructed in the same fashion as Figure 4. The
larger CNN-based models considered are very deep, e.g., ResNet50,
and are grouped into layer blocks, as described in Section 4.1.

One clear takeaway from Figure 5 is that the variation in the 0%
accuracy loss point between layers, both within and across models,
is large. When considering a single network, the 0% point can vary
between layers by as much as 2781 x (LB-4 and FC-1 of CF-VGG).
Across models, we find up to five orders of magnitude difference in
fault tolerance (FC-1 of CF-VGG versus LB-4 of VGG16). Since
Ares can quantify the variation of weight resilience at a fine granu-
larity, this translates to better designs than considering faults at the
model level alone.

BER-accuracy tradeoffs vary across layers. A region exists on
the BER-accuracy curves between the 0% accuracy loss point and
the knee where efficiency tradeoffs could be made in applications
that can tolerate minor accuracy degradation. We formalize this by
highlighting the 0%, 1%, 5%, and 10% points (red ticks) in Figure
5. The distance between the ticks represents the length of the tail
between 0% accuracy loss and the exponential of the BER-accuracy
curves. A larger distance between 0% BER and 10% relative error
increase indicates a longer tail, implying a more graceful degradation
in accuracy.

We find that layer blocks of VGG16 have the longest tails and
ResNet50 blocks have the smallest. Tail length has implications for
making BER-accuracy tradeoffs when designing hardware because
it corresponds to the number of additional faults that can be tolerated
without significantly affecting accuracy. A shorter tail indicates that

10 g0 gl

w0 —0s3 Z w0 —0Qus Z %

sl 5 5]

= 60 g 60 2 60

2 40 = £ 40

Z 20 Z 20 Z 20

=S = H = +

[9) : o .) :

o 10°% 10-° 1074 102 ™ 10°% 10-° 1074 1072 b 1078 10-° 1074 102
Bit Error Rate Bit Error Rate Bit Error Rate
(a) LeNetFC (b) LeNetCNN (¢) CF-VGG

% 100 g 100 g 100

5 5 S 80 —0Q44

2 80 £ 80 g2

53] 53] 53]

= : s 60

Z 60 2 60 2 40

o 9 9

= < < 5

Z w0 —0Q 134 Z w0 —076 Z?

@) : [9) o

10710 1078 10°° 104 102 10-10 10°% 10°° 1074 102 {1 10°% 10°° 1074
Bit Error Rate Bit Error Rate Bit Error Rate
(d) VGG16 (e) ResNet50 (f) TiGRU

Figure 6: BER sensitivities in activation and hidden-state for GRUs for all models.

the occurrence of additional faults will push the model into the
exponential region of the BER-accuracy curve, thus these layers
likely require more protective margins.

4.4 Structure sensitivity

Ares can also help designers understand which structures within
DNN:ss are the most fault tolerant. The properties of these structures
have markedly different execution patterns: weights are read-only
while activations and hidden state are read once then rewritten. Un-
derstanding the sensitivities of different structures to faults makes
further fine-tuning and optimization possible.

Figure 6 shows BER-accuracy curves as a result of fault injection
in the activation and hidden state units; weights are assumed to be
fault-free to isolate the respective effects. We see that the points
identified as 0% BER for activity fault injection differ by orders of
magnitude in the larger models (ResNet50 and VGG16 at 2 x 107
and below), and smaller ones (LeNetFC, LeNetCNN, and TiGRU at
1075 and above).

Activations are less sensitive than weights. For the majority of
our models, we find that activations exhibit fault tolerance similar to
or greater than that of the weights of the same model at an equiva-
lent BER. Activations for ImageNet-based models (ResNet50 and
VGG16) are up to 50x more tolerant to faults than their weights.

Reuse dictates sensitivity. Intuition suggests that the relatively
higher resilience of activations in the largest CNN models (ResNet50
and VGG16) is due to weight reuse in CNN layers because filter
kernels are convolved across the entire 2D input feature map. A fault
in the weight kernel recurs and has greater impact as it is multiplied
by all the activations in the associated channel, while a fault in an
input activation affects a much smaller subset of values.

S CONCLUSION

The Ares framework can rapidly and accurately quantify the fault
tolerance and accuracy tradeoffs of three prominent types of DNNs:
fully-connected, CNN, and GRU. Ares enables faults to be analyzed
at the model, layer, and structure level, providing users with varying
degrees of granularity at which to consider fault tolerance. This
paper demonstrates: model-specific, more-aggressive data types can
provide 10x more resilience, and fault tolerance can vary across
models by several orders of magnitude; per-layer fault tolerance can

vary by up to 2781 x; activations can be up to 50x more resilient
than weights. The findings of this paper suggest how future DNN
hardware designs can leverage the implicit fault tolerance properties
of DNNs demonstrated here to improve efficiency.

6 ACKNOWLEDGEMENTS

We thank Glenn Holloway for his help revising this work and the
anonymous reviewers for their feedback. This work was supported
in part by the Center for Applications Driving Architectures (ADA),
one of six centers of JUMP, a Semiconductor Research Corpora-
tion program co-sponsored by DARPA. The work was also partially
supported by the U.S. Government, under the DARPA CRAFT and
DARPA PERFECT programs. The views and conclusions contained
in this document are those of the authors and should not be in-
terpreted as representing the official policies, either expressed or
implied, of the U.S. Government. Reagen was supported by a Siebel
Scholarship.

REFERENCES

[1] “Solid state drive (ssd) requirements and endurance test method.” https://www.
jedec.org/standards-documents/focus/flash/solid- state-drives, 2017.

B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernandez-
Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling low-power, highly-accurate
deep neural network accelerators,” ISCA, 2016.

S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer, “Sassifi: An
architecture-level fault injection tool for gpu application resilience evaluation,”
ISPASS, 2017.

P. N. Whatmough, S. K. Lee, H. Lee, S. Rama, D. Brooks, and G. Y. Wei, “A
28nm soc with a 1.2ghz 568nj/prediction sparse deep-neural-network engine with
0.1 timing error rate tolerance for iot applications,” ISSCC, Feb 2017.

1. Goodfellow, Y. Bengio, and A. Courville in Deep Learning, MIT Press, 2016.
P. Kerlirzin and F. Vallet, “Robustness in multilayer perceptrons,” Neural Compu-
tation, 1993.

Y. L. Cun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” NIPS, 1990.
G. Li, S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and S. W. Keckler,
“Understanding error propagation in deep learning neural network (dnn) accelera-
tors and applications,” SC, 2017.

O. Temam, “A defect-tolerant accelerator for emerging high-performance applica-
tions,” ISCA, June 2012.

B. Randell, P. Lee, and P. C. Treleaven, “Reliability issues in computing system
design,” ACM Comput. Surv., June 1978.

“Keras: The python deep learning library.” http://keras.io, 2018.

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins,
J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: a CPU and GPU math
expression compiler,” SciPy, 2010.

“Tensorflow: An open-source software library for machine intelligence.”
https://www.tensorflow.org/, 2018.

2

(3]
(4]
[5]
(6]
(7]
(8]
91
[10]
[11]

[12]

[13]

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 28.80 points
 Normalise (advanced option): 'original'

 32

 D:20180419081402
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 28.8000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

