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Abstract

Specialized accelerators are increasingly used to meet the
power-performance goals of emerging applications such as
machine learning, image processing, and graph analysis. Ex-
isting accelerator programming methodologies using APIs
have several limitations: (1) The application code lacks porta-
bility to other platforms and compiler frameworks; (2) the
lack of integration of accelerator code in the compiler limits
useful optimizations such as instruction selection and oper-
ator fusion; and (3) the opacity of the accelerator function
semantics limits the ability to check the final code for cor-
rectness. The root of these limitations is the lack of a formal
software/hardware interface specification for accelerators.
In this paper we use the recently developed Instruction-
Level Abstraction (ILA) for accelerators to serve this pur-
pose, similar to how the Instruction Set Architecture (ISA)
has been used as the software/hardware interface for pro-
cessors. We propose a compiler flow termed D2A using the
ILA and present a prototype that demonstrates this flow for
deep learning (DL) applications. This prototype compiles
programs from high-level domain-specific languages, e.g.,
PyTorch and MxNet, to multiple target accelerators with no
target-specific extensions to the application or compiler —
thus demonstrating application portability. It includes com-
piler optimizations through instruction selection using equal-
ity saturation-based flexible matching. Finally, we demon-
strate checking the correctness of the resulting code through
both formal verification of individual matched operations, as
well as fully automated simulation-based validation of com-
plete applications. The evaluation of the prototype compiler
is based on six different DL applications and three different
accelerators. Overall, this methodology lays the foundation
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for integrating accelerators in compiler flows using a formal
software/hardware interface.
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1 Introduction

Hardware specialization is the main technique for improving
power-performance efficiency in emerging compute plat-
forms. By customizing compute engines, memory hierar-
chies, and data representations [12, 21, 43], hardware accel-
erators provide efficient computation in various application
domains like artificial intelligence, image processing, and
graph analysis [15, 28-30, 61, 87]. At the same time, there is a
growing trend in using domain-specific languages (DSLs) for
boosting development productivity, e.g., TensorFlow for deep
learning [1], Halide for image processing [59], and Graphlt
for graph applications [88]. However, there are critical gaps
in bridging these two distinct system trends in the current
compilation flows that start from high-level DSLs and target
accelerator-rich platforms.!

Large industrial teams invest substantial resources to ad-
dress DSL-to-accelerator mapping challenges via bespoke
infrastructure [38, 39]. For smaller teams, like in the aca-
demic research community, these gaps make end-to-end
evaluation of new accelerator designs prohibitively difficult;
many recent papers on accelerator designs only evaluate
on small application snippets, e.g., individual layers of deep
neural networks [9, 23-25, 37, 56, 63, 64, 66, 71, 80, 81]. Un-
fortunately, an accelerator’s results for application snippets
are often not predictive of its influence on overall system
behavior, e.g., due to cumulative effects of custom numer-
ical representations — engineers need the ability to easily

INote that there are two different compilation problems that DSL compilers
tackle: (1) adding compiler support for a given custom accelerator, and
(2) generating the accelerator design to be implemented on an FPGA as part
of the compilation [11, 32, 42, 55, 67, 79]. This paper deals with the former.
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#define HWREG(addr) (*((volatile uint128_tx*)(addr)))
union buffer128 {

uint128_t v128;

int64x2_t v64;

} buf;

// FlexASR API: Layer Recude (max/min/mean pooling)
bool FlexAsrLayerReduce(uint64_t* argl, /* ... */) {
// set up inputs and arguments
buf.v64[0] = @xC9A8070100CA8801;
buf.v64[1] = 0x09D1008100810000;
HWREG (0xA@500000) = buf.v128; // internal buffer[0]
13 /7 ...
14 ‘ // configure and invoke operation
15 | buf.v64[0] = 0x0101000000010001;
‘ buf.v64[1] = 0x0000000200000001;
\ HWREG (0xAQ700010) = buf.v128; // global buffer control
‘ buf.v64[0] = 0x0000000000000001;
‘ buf.v64[1] = 0x0000000000000000;
20 \ HWREG (0xA0400010) = buf.v128; // memory manager config
\
\
\
\

21 buf.v64[0] = 0x0000000000000000;

22 buf.v64[1] = 0x0000000000000000;

23 HWREG (0xA0000010) = buf.v128; // invoke operation
24 // wait and retrieve results from the buffer

25 | sleep(5);

26 ‘ buf.v128 = HWREG(0xA0500000);
27| /7 ...

28 | 2}

Figure 1. Snippet of the FlexASR device driver [71]. Through
MMIO commands, the driver first stores input arguments,
e.g., weights, in the accelerator’s internal buffer (lines 10
to 13). It then sets up the configuration such as tensor dimen-
sion and vector size (lines 15 to 20). Finally, it triggers the
operation (line 23) and retrieves the result (starting line 26).

validate complete applications compiled onto accelerator
platforms. This is lacking in current prevalent practice.

1.1 Prevalent Practice: Accelerator Drivers/APIs

Effective accelerator utilization requires offloading applica-
tion computations to those supported by accelerators. In
current practice, this is generally accomplished by manu-
ally crafting device drivers to provide “hardware function
calls” for specific operations. This essentially provides an
application programming interface (API) for accelerators,
where each hardware function call consists of low-level ac-
celerator invocation commands that configure, initiate, and
check/return the results. Figure 1 shows an example hard-
ware function call, in which a layer reduction operation is
implemented by a sequence of memory-mapped input/out-
put (MMIO) loads/stores from the host processor to invoke
the FlexASR accelerator [71]. This MMIO-based API is the
prevalent mechanism for accelerator invocation.

Generally, hardware function calls are manually added
by application programmers, or they can be added by com-
pilers via handcrafted accelerator-specific extensions. Such
bespoke compiler extensions demand tedious effort and deep
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expertise in the hardware and the compilation stack.In prac-
tice, this limits end-to-end deployment of DSLs to accelerator-
rich platforms within reach for only a few — large enterprises
that can afford teams of hardware, software, and system ex-
perts for high-value applications [10, 22, 39]. Further, this
API-based approach has three critical gaps in mapping ap-
plications from DSLs to accelerator-rich platforms:

G1 Lack of portability. Hardware function calls imple-
mented in device drivers contain MMIO loads/stores for
accelerator invocation, but these low-level commands
work only for a specific processing platform. When these
calls are manually added by an application programmer,
the application is not portable to new accelerator plat-
forms. When these are added by a compiler through be-
spoke extensions, this task requires significant accelerator-
specific restructuring of the compiler. This is challenging
due to: (1) the mismatch between fine-grained compiler
intermediate representation (IR) intrinsics and coarse—
grained accelerator operations (that are often used to
deliver power-performance efficiency), and (2) the lack
of a formal software/hardware interface specification for
the accelerator that can be leveraged to automate this
matching. This limits portability across both compiler
frameworks and hardware platforms.

G2 Lack of integration into standard compiler flows.
Unlike general-purpose processors which have the ISA
as the software/hardware interface, accelerators lack a
formal software/hardware interface specification which
makes the accelerator APIs opaque to the compiler stack.
This makes it challenging to integrate them in standard
compiler flows. For example, standard techniques for in-
struction selection [7] become challenging with a “black-
box” API, which provides little flexibility in selecting
and reusing parts of these APIs. The fixed API also lim-
its automation in exposing potential optimizations, e.g.,
operator fusion that may minimize data transfers.

G3 Lack of ability to validate compilation results. Ac-
celerators often incorporate novel techniques such as
custom memory management schemes and numeric rep-
resentations (referred to as numerics) to improve com-
putational efficiency. However, existing compiler plat-
forms do not readily support these unconventional fea-
tures, which can lead to the generation of inefficient or
even incorrect code. Unfortunately, the lack of a formal
software/hardware interface specification of accelerator
operations makes it very difficult to validate compila-
tion results. In current practice, this is done using soft-
ware/hardware co-simulation with an FPGA emulation
of the accelerator or with a low-level register-transfer
level (RTL) model for the accelerator. The former incurs
significant engineering overhead, and the latter is very
slow, making validation for full applications unrealistic.
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In practice, validation using RTL co-simulation is per-
formed only for individual accelerator-supported opera-
tions. This is insufficient to determine if small deviations
at the operation level (e.g., due to different numerics)
lead to acceptable results at the application level. Fur-
ther, the need for a fully functional RTL model limits
early stage software/hardware co-design, i.e., software
development before the hardware is implemented.

The lack of a formal software/hardware interface specifi-
cation that provides the semantics of individual accelerator
operations is the root inadequacy across the three gaps. In
this work, we propose the D2A (short for “DSLs to Accel-
erators”) methodology which addresses these gaps via the
use of an ISA-like formal model for accelerators, instead of
using API-supported hardware function calls. The formal
semantics of the accelerator operations are provided through
an accelerator instruction set. This formal model and the finer-
grained, instruction-level control it provides (in contrast to
API calls) facilitates standard compiling techniques (e.g., in-
struction selection and optimization), facilitates portability,
and enables validation of compilation results.

1.2 D2A Methodology: Key Ideas

Identifying the computation in the application that can be
offloaded to the accelerators is effectively seeking mappings
between compiler IR intrinsics and the accelerator opera-
tions such that they are functionally equivalent and lead
to performant code. (Note that in certain domains like ma-
chine learning, small numerical differences may not affect the
application-level results, such as a classification category, so
notions of “equivalence” should reflect this property.) While
the semantics of the accelerator operations is available in the
hardware RTL model, this is too low-level for the compiler to
target directly and thus not an option. In the D2A methodol-
ogy, we use the Instruction-Level Abstraction (ILA) [36], for
this purpose. The ILA, like the ISA for processors, provides
a software/hardware interface specification for accelerators.
It bridges the gap between the compiler IR intrinsics on one
hand and the accelerator operations on the other — providing
the basis for specifying IR-accelerator mappings.

Compiler IR-Accelerator Mappings using ILAs. The ILA
model of an accelerator provides formal semantics at its
software/hardware interface through a lifting of the accel-
erator operations in the form of a set of instructions, each
of which reads/updates the accelerator architectural state.
Similarly, the IR intrinsics can be defined as instructions that
update program state. This provides a uniform model on
both sides — the IR side and the accelerator side — in the
form of instructions. We specify the mappings as pairs of
program fragments, where a program fragment comprises
a sequence of instructions. Unlike API calls or RTL models,
program fragments using accelerator ILA instructions cap-
ture the underlying accelerator operation semantics while
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abstracting out low-level hardware implementation details.
Further, these program fragments provide the flexibility to
specify mappings at different levels of granularity — this helps
bridge the granularity mismatch which may exist between
IR intrinsics and coarse-grained accelerator operations.

Instruction Selection and Optimization. With the instruc-
tion semantics specified by an ILA, the D2A methodology
facilitates standard instruction selection and optimization
techniques in compilers. In this work, we use term rewriting
for instruction selection, i.e., using compiler IR-accelerator
rewrites to map IR intrinsics to accelerator instructions [3,
7, 20]. Specifically, we utilize equality saturation to opti-
mally match equivalent rewrites of the program and there-
fore reduce the need for manual program restructuring (ad-
dressing gaps G1 and G2) [69, 74]. Further, the compiler
IR-accelerator mappings have finer-grained knowledge and
control of accelerator operations through the instruction-
level interface provided by ILAs. This enables optimizations
that require understanding of accelerator behavior, e.g., oper-
ator fusion for reducing data movement (addressing gap G2).

ILA-based Compilation-Results Validation. We use the
term compilation-results validation for checking that the
results of the compilation are correct, i.e., functionally equiv-
alent or with acceptable deviation when there are differ-
ences in numerics. This may be done at the level of a single
accelerator-supported operation, i.e., checking the correct-
ness of compiler IR-accelerator mappings, or for the entire
application. The formal semantics of the ILA instructions
provides the foundation for proof-based formal verification
or simulation-based validation. This enables systematic end-
to-end compilation-results validation as well as early-stage
software/hardware co-design (addressing gap G3).

D2A Compilation Flow. The overall compilation flow us-
ing the D2A methodology is shown in Figure 2. We first trans-
late the application program, provided in a high-level DSL,
into the compiler IR. Next, we perform equality saturation to
search a large space of equivalent programs given the com-
piler IR-accelerator mappings (along with general-purpose
rewrite rules). Based on a given cost function, we then extract
the lowest-cost program and pass it on for code generation,
where each accelerator instruction is subsequently lowered
to the corresponding MMIO load/store command. This gen-
erated program executes on the host processor and invokes
accelerator operations through MMIO commands. (Note that
the ILA modeling and the validation of the IR-accelerator
mappings are omitted from this figure.)

1.3 Prototype Implementation and Case Studies

As a demonstration of the D2A methodology, we have im-
plemented an end-to-end compilation flow for deep learning
(DL) applications by integrating it with an existing compiler
flow. Specifically, our prototype compiler utilizes the DSL
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Figure 2. D2A compilation flow overview.

front-end and the code-generation capability provided by
the TVM framework [14]. For instruction selection, it lever-
ages the rewrite rules and the equality saturation engine
provided by Glenside and egg [68, 83]. The ILA-models of
accelerators, the validation of IR-accelerator mappings, and
compilation-results validation at the application level are
powered by ILA-based methods in ILAng [35].

We show the generality of the D2A methodology through
multiple case studies. At the front-end, we consider six DL
applications for language processing and image recognition,
e.g., Transformer [77] and ResNet [31]. For the target accel-
erators, we add support for three custom accelerators that
provide hardware operations at different levels of granular-
ity: VTA [50] is a fine-grained accelerator for general tensor
operations; HLSCNN [81] is a coarse-grained accelerator
providing 2D convolutions; FlexASR [71] is an accelerator
for speech recognition, specializing in coarse-grained opera-
tions such as a long short-term memory (LSTM) layer.

We added support for the three accelerators — developed
their ILA models, provided compiler IR-accelerator mappings
for operations supported by them, and validated all the map-
pings. Note that this work for supporting a new accelerator
is a one-time effort that can be reused across different appli-
cations. Our prototype compiler successfully compiled all
six DL applications (developed by different teams and pro-
grammed in different DSLs) for exploiting the three custom
accelerators. Our prototype and case studies demonstrate the
key ideas in the D2A methodology for end-to-end compila-
tion with validated results. We do not claim this work provides
a complete, fully optimized compiler for custom accelerators;
rather, it establishes the foundations for validated compilation
for such targets through the use of a formal instruction-level
software/hardware interface for accelerators.

1.4 Contributions
Overall this paper makes the following contributions:

o We present the D2A methodology that uses an instruction-
level formal software/hardware interface specification for
an accelerator, which abstracts away low-level implemen-
tation details while providing a formal hardware semantics
with the following capabilities:

— It bridges the granularity gap between compiler IR in-
trinsics and accelerator operations with flexible map-
pings between instruction-level program fragments.

— It enables integration into standard compiler flows and
the application of standard techniques like instruction
selection and optimization.

— It provides for end-to-end validation of compilation-
results for accelerator-extensible compilers.

e We describe a prototype? that implements the D2A com-
pilation flow on top of open-source frameworks TVM,
Glenside, egg, and ILAng.

o We provide a set of case studies that demonstrate:

— portability: through compiling six DL applications (pro-
grammed by different teams in different DSLs)

— extensibility: through adding support for three custom
accelerators which provide operations at different levels
of granularity.
compilation-results validation: for both IR-accelerator
mappings, and at the application-level. The latter demon-
strates how this methodology exposed several accuracy
issues due to custom numerics.

This article is organized as follows. In Sections 2 and 3, we
explain the D2A methodology and our compiler prototype,
respectively. We then describe the case studies and evalu-
ation results in Section 4. Future work, related work, and
conclusions are discussed in Sections 5, 6, and 7, respectively.

2Qur prototype will be released under a permissive open-source license.
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2 D2A Methodology

In this section, we explain three key aspects of the D2A
methodology: (1) adding accelerator support by specifying
mappings between compiler IR intrinsics and accelerator
operations, (2) compiling applications by searching within
input programs for computations supported by accelerators,
and (3) ensuring compilation-result validation and support-
ing early-stage software/hardware co-design.

2.1 Specifying IR-Accelerator Mappings using ILAs

The ILA is an ISA-like formal model for specifying the func-
tional behavior of accelerators. It generalizes the notion of
instructions to accelerators and provides a modular func-
tional specification as a set of instructions. Like processor
ISAs, it does so by specifying how each instruction updates
software-visible (viz., architectural) state while abstracting
out implementation details.

2.1.1 Accelerator ILA. We develop the ILA formal model
for an accelerator by following the methodology proposed
in prior work [36]. Each instruction of an accelerator ILA
corresponds to a command at the accelerator interface, i.e.,
an MMIO load or store command. The ILA captures formal
semantics of accelerator behavior by specifying how each
instruction reads/updates the architectural state variables.
Essentially, the ILA is a modular (per-instruction) opera-
tional specification of an accelerator. Figure 6 in Appendix C
provides an accelerator ILA example.

2.1.2 Compiler IR ILA. While the ILA is primarily in-
tended to serve as the formal model for accelerators, it is
convenient to also use it to formally model compiler IR in-
trinsics. We develop the compiler IR ILA by following the
approach used in prior work for the NVidia parallel execution
thread (PTX) programming model [86]. Each instruction of a
compiler IR ILA corresponds to an IR intrinsic and specifies
its operational behavior in terms of how it updates program
state. Modeling both the compiler IR and accelerators using
ILAs provides a uniform model on both sides, and enables
the use of the ILAng toolkit for their verification/validation.

2.1.3 IR-Accelerator Mappings. Due to the granularity
gap between the IR instrinsics and the accelerator operations,
it is often not possible to construct a one-to-one mapping
between the compiler IR and the accelerator operations. In-
stead, on each side (the compiler IR and the accelerator), we
consider a program fragment that comprises a sequence of
instructions defined by the associated ILA model. The pro-
gram fragments provide a basis for many-to-many instruction
mappings between the two sides, providing flexibility that is
key to addressing the granularity mismatch challenge.

The specification of the mappings starts from the accel-
erators — based on the given accelerator, we provide an
IR-accelerator mapping for each accelerator operation. This
bottom-up approach is a one-time effort for each accelerator,
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= nn_dense(%2, %3)
%4 = bias_add(%1, %5)

Verification task 1 (VT1)
*  Compiler IR ILA vs. compiler implementation
* Modular, per-instruction check

comILA.nn_dense %argl %arg2 %arg3
comILA.bias_add %argd %argl %arg5s

Verification task 2 (VT2)
* Program fragments equivalence checking
* Sequence to sequence checking

accILA.cfgPELayDims %diml %dim2
accILA.cfgPEManager %addrl %addr2
accILA.cfgPEActions %addr3 %addr4
accILA.cfgGBMemIdxs %midx1 %midx2
accILA.cfgGBControl %opcode
accILA.triggerStart

Verification task 3 (VT3)
* Accelerator ILA vs. RTL implementation
* Modular, per-instruction check

WR ©xA1040010, 0x0100102040001001
WR ©xA1040020, OxFFFF49DE5F5C0010
WR ©xA1080010, 0x010210403301FFFF
WR ©xA0040010, 0x0000000102040001
WR ©xA0070010, 0x004008101000000A
WR OxA 10, 0x00

000001

Figure 3. Verification tasks and the IR-accelerator mapping
for a linear-layer operation supported by FlexASR [71]. (The
mapping is simplified for a clearer presentation. See Figure 5
in the Appendix for the complete mapping.)

requires no knowledge of the input program, and is the key
for modular and extensible compilation.

Figure 3 shows an example of an IR-accelerator mapping
for a linear layer operation for the FlexASR accelerator [71].
The program fragments of the compiler IR and the accelerator
are shown in parts (b) and (c), respectively. As discussed,
each instruction of the compiler IR ILA corresponds to one
IR intrinsic, which is reflected in parts (a) and (b). Similarly,
each instruction of the accelerator ILA corresponds to one
command at its MMIO interface, as shown in parts (c) and (d).

2.2 Flexible Matching using Equality Saturation

Given the IR-accelerator mappings and an input program,
the next step in the D2A methodology is to identify computa-
tions in the input program that can be offloaded to equivalent
accelerator operations. We approach this task by utilizing
term rewriting techniques — given a set of syntactic rewrite
rules (¢ — r), rewrite instances of pattern ¢ in the input
program with pattern r where applicable [3, 7, 20, 69, 74]. In
term rewriting systems, the application of rewrite rules is
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correct by construction as long as the rules preserve seman-
tic equality. This provides for modular correctness checking
through checking the individual rewrite rules.

Classic term rewriting systems often suffer from the phase
ordering problem (i.e., the order in which rewrites are applied
affects final performance) and thus require careful order-
ing [82]. In D2A, we utilize the equality saturation technique
to mitigate phase ordering problems [69, 74].

Equality Saturation. Given an input program p, equality
saturation repeatedly applies the given rewrite rules to ex-
plore all equivalent ways to express p (with respect to the
rules). It utilizes the e-graph data structure to efficiently
represent an exponentially large set of equivalent program
expressions [52, 53]. Upon reaching a fixed point, i.e., when
no application of any rewrite rule can introduce a new pro-
gram expression, it extracts the optimal rewritten program
according to a given cost function. This provides for search-
ing over the space of all possible rewrites and finding the
representative most suitable for the given purpose without
sophisticated ordering considerations.

2.2.1 IR-Accelerator Rewrites. Based on the provided
IR-accelerator mappings, we derive a set of rewrite rules
where the left-hand side of the rule is the compiler IR pat-
tern and the right-hand side is the corresponding acceler-
ator instructions. Applying these rules, which we call the
IR-accelerator rewrites, allows replacing the computations
that are exact syntactic matches to the compiler IR pattern
specified in the mappings by the corresponding accelerator
operations. We call this exact matching.

2.2.2 Flexible Matching and Compiler IR Rewrites.
Exact matching provides a baseline matching capability but
may be limited in practice because there is often no canonical
IR expression to represent a program. Therefore, the input
program can have constructs that are syntactically different
from the left-hand side of the IR-accelerator rewrites but are
semantically equivalent to the pattern. For example, in the
IR-accelerator mapping shown in Figure 3, we specify the
compiler IR pattern for a linear layer (as an S-expression):

(bias_add (nn_dense %a %b) %c).
However, a linear layer can be equivalently expressed as
(add (reshape (nn_dense %a %b) %s) %c)

when %c is a vector, for certain shapes %s. This prevents exact
matching from identifying potential accelerator calls.
Rather than enumerating various semantically equivalent
IR-accelerator mappings, we include another set of rewrite
rules that we call compiler IR rewrites. Each compiler IR
rewrite transforms an IR pattern into another IR pattern,
e.g., from the second to the first linear-layer IR pattern above,

without replacement by accelerator instructions. These general-

purpose rewrite rules do not depend on the input program
nor on the accelerator, but help expose more potential matches.
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We refer to this as flexible matching, as it enables finding
matches that may be missed by exact matching.

2.3 ILA-Based Compilation-Results Validation

The formal semantics of ILA instructions provides the foun-
dation for validating compilation results. The D2A method-
ology does compilation results validation at two levels.

2.3.1 Checking IR-Accelerator Mappings. The use of
term rewriting provides for modular validation — checking
end-to-end compilation correctness by verifying individual
rewrite rules. In D2A, we focus on the verification of IR-
accelerator mappings from which IR-accelerator rewrites are
derived. Checking and inferring rules between compiler IR
patterns is not the focus of this paper [5, 48, 51].

Verifying an IR-accelerator mapping consists of three ver-
ification tasks, as illustrated in Figure 3, At the two ends, i.e.,
the compiler IR and the accelerator end, we check the equiva-
lence through VT1 and VT3, respectively. In the middle, VT2
checks the equivalence between a compiler IR ILA program
fragment and an accelerator ILA program fragment. This
is an instruction-sequence-to-instruction-sequence verifica-
tion, typically over short program fragments that correspond
to operations instead of a whole application.

Proof-Based Formal Verification. The formal semantics
of ILA instructions allows for formally verifying the IR-
accelerator mappings. For VT1, the equivalence between
compiler IR intrinsics and compiler IR ILA instructions can
be checked using software model checking tools (e.g., CBMC
and SeaHorn [18, 27]) by translating ILA models into soft-
ware models, as has been done in prior work [34]. For VT2,
the two program fragments can be encoded into Satisfiabil-
ity Modulo Theories (SMT) formulas (e.g., via unrolling the
instructions) and their equivalence checked using an SMT
solver such as Z3 [19]. For VT3, the refinement checking
between the accelerator ILA (specification) and the acceler-
ator RTL (implementation) has been shown successfully in
prior work [36] that leverages processor verification tech-
niques [8, 47]. We provide a case study for VT2 in Section 4
that focuses on verifying equivalence of the operator defini-
tions in the two program fragments over abstract data types,
thus avoiding dealing with differences in numerics which
are the focus of the simulation-based validation.

Simulation-Based Validation. The D2A methodology also
supports checking VT1-3 through simulation-based valida-
tion. This is highly automated as the ILAng platform [35]
can automatically generate an executable software model
(in C++/SystemC) of a program of ILA instructions. These
executable models capture the precise definitions of the nu-
merics used by the accelerator. For VT1, the simulation of
ILA instructions is checked against the execution of the cor-
responding IR intrinsics (i.e., the original compiler generated
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code). For VT2, we compare the simulation of two ILA pro-
gram fragments. For VT3, the ILA simulation can be checked
against RTL simulation of the accelerator implementation.

2.3.2 Application-Level Co-Simulation. Verification at
the application-level, e.g., examining the final accuracy of
an inference model instead of its individual layers, is espe-
cially critical for exploiting accelerators that utilize custom
data representations. While such accelerators gain power-
performance efficiency by leveraging custom data types, they
may introduce modest numerical mismatches at every op-
eration. Thus, the IR-accelerator mapping validation for a
pair of program fragments (§ 2.3.1) can at best check that
the numerical differences for the computation in these frag-
ments is within a certain range. Unfortunately, this provides
no guarantee of the correctness at the application level and,
therefore, requires the application-level co-simulation capa-
bility enabled by the use of the ILA models.

3 Prototype Implementation

As a demonstration of the D2A methodology, we have im-
plemented an end-to-end compilation flow for Deep Learn-
ing (DL) applications by integrating with existing compiler
frameworks. Figure 4 shows the workflow of our prototype.

DSL Front-End. TVM is a compiler framework for DL appli-
cations that provides various capabilities for expressing and
optimizing DL applications [14]. Here, we make use of TVM’s
model importer as the front-end for DSL programs. The im-
porter supports taking programs written in mainstream DL
frameworks and interchange formats (e.g., ONNX [46], Py-
Torch [57], and TensorFlow [1]) and translating them into
Relay, the top-level IR used in TVM [62].

Flexible Matching. We leverage the egg library for equality
saturation in our prototype [83]. First, the input program
is translated from Relay to Glenside, a pure (side effect—
free) tensor program representation that supports specifying
rewrite rules for tensor programs [68]. Next, with both the
compiler IR rewrites and IR-accelerator rewrites provided in
Glenside, the equality saturation engine explores the space
of possible rewrites as discussed in § 2.2. Upon reaching a
fixed point, an optimal rewritten program is extracted based
on a given cost function. Here, as a proof of concept, we
implemented a cost function that maximizes the number
of accelerator operations; we leave cost functions that best
correspond to measures of performance for future work.

Code Generation. Once flexible matching completes, the ex-
tracted rewritten program is translated back to Relay where
accelerator instructions are specially annotated. In our pro-
totype, we use TVM’s Bring Your Own Codegen (BYOC)
interface to implement the generation of those accelerator
instructions [16]. BYOC allows for invoking the target inter-
face of a custom execution mechanism (e.g., an accelerator’s
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MMIO loads/stores) by having TVM’s runtime defer execu-
tion to a user-specified runtime when it reaches an annotated
portion of the program. Here, we implemented a custom run-
time that invokes the accelerator implemented on an FPGA
(§ 4.3.2) as well as the ILAng-generated simulators (see be-
low), producing the necessary ILA instructions at run time.
Such a just-in-time approach helps prototyping as it allows
for easily inspecting intermediate values in the program and
simplifies the implementation, but introduces overhead from
communication between the TVM runtime and our custom
D2A runtime. In principle, this overhead can be eliminated
by using BYOC’s ahead-of-time compilation mode.

ILA Modeling and Correctness Verification. We utilize
ILAng, an open-source platform for ILA-based modeling and
verification, for developing the ILA models and perform-
ing ILA-based verification/validation [35]. ILAng provides
support for the following capabilities:
1. (a) manually specifying and (b) semi-automatically
synthesizing an ILA model [70].
2. refinement checking between an ILA specification and
an RTL implementation.
3. automatic translation from semantics of ILA instruc-
tions to SMT formulas.
4. generating a sound executable simulator based on the
operational semantics defined by the ILA model.

We use 1(a), 3, and 4 in this work.

4 Case Studies and Evaluation

We show the generality of the D2A methodology through
multiple case studies.

4.1 Target Accelerators

We added support for three accelerators specialized for DL
applications that provide hardware operations at different
levels of granularity:

1. FlexASR is an accelerator optimized for speech and natu-
ral language processing (NLP) tasks that supports various
recurrent neural networks [71]. It uses a custom numeric
datatype AdaptivFloat for boosting the accuracy of quan-
tized computations [72].

2. HLSCNN is an accelerator optimized for 2D convolu-
tions [81]. HLSCNN is designed to operate on 8/16-bit
fixed point data, and the feature map tensors are expressed
in the NHWC layout format for providing better perfor-
mance through parallelization.

3. VTA is a parameterizable accelerator for tensor opera-
tions featuring a processor-like design with an ISA and
configurable parameters [50]. It provides efficient hard-
ware implementations of element-wise arithmetic opera-
tions as well as generalized matrix multiplication (GEMM).

The ILAs for FlexASR, HLSCNN, and VTA are approximately
5600, 1600, and 2100 lines of code, respectively — note that
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Figure 4. Prototype implementation of the D2A compilation flow.

Table 1. End-to-end compilation statistics.

Application Statistics

Application | EfficientNet | LSTM-WLM | MobileNet-V2 | ResMLP | ResNet-20 | Transformer

Source DSL MxNet PyTorch PyTorch | PyTorch MxNet PyTorch

3 | #Relay Ops 232 578 757 343 494 872
Number of Static Accelerator Invocations using Exact Matching/Flexible Matching

4 | FlexASR 0/35 1/1 0/41 0/38 2/22 0/66

5 | HLSCNN 35/35 0/0 40/40 0/0 21/21 0/0

6 | VTA 0/35 36/36 1/41 38/38 2/22 66/66

these ILAs serve the dual purposes of enabling compilation
via the D2A methodology as well as validating the RTL de-
sign. Additionally, the BYOC-based code generators and run-
times for these devices are approximately 450, 300, and 900
lines of code, respectively. Please see Appendix A for a com-
plete list of supported operations for the three accelerators.

4.2 Target Applications

For our experiments, we considered six DL applications cor-
responding to common neural network models for language
and vision tasks that contain operators supported by the
three target accelerators. We selected applications with rea-
sonable size for human inspection and in-depth analysis.

1. EfficientNet is a recent convolutional neural network
(CNN) designed for image classification that uniformly
scales network width, depth, and resolution [73]. We chose
it because it contains convolutions that could be acceler-
ated by VTA and HLSCNN.

2. LSTM-WLM is a simple text generation application [84]
implemented using an LSTM recurrent neural network
architecture [26]. We chose this model because it contains
an LSTM layer that could be accelerated by FlexASR. As
detailed in Appendix B, we made a small modification to
the model after importing into Relay to match the seman-
tics of our FlexASR LSTM code generator, namely by not
returning the final hidden and cell states (unused in this
application).

3. MobileNet-V2 is a commonly used CNN, designed for
mobile and embedded vision applications, that uses depth-
wise separable convolutions [33, 65]. We chose MobileNet
due to its wide use, especially on embedded devices.

4. ResMLP is a recent residual network, designed for image
classification, comprised only of multi-layer perceptrons
and no convolutional layers [75]. We chose this model
because its preponderance of linear layers means it could
be accelerated by VTA as well as by FlexASR (despite not
being a language model).

5. ResNet-20 is a CNN designed for image classification
that applies identity mapping [31]. As with MobileNet,
we chose ResNet for its common use in practice.

6. Transformer is a language representation model com-
prised primarily of attention mechanisms [77]. We chose
Transformer as a representative of recent NLP models in
common use.

With the exception of the minor change for LSTM-WLM,
all applications were mapped to accelerators without any
manual modifications. Detailed parameters for these applica-
tions are given in Appendix B.

4.3 Evaluation: Compilation

We examined the portability provided by D2A through end-
to-end compilation using our compiler prototype. We took
six DL applications, developed by different teams in different
DSLs, and compiled them for the three target accelerators.
Our compiler prototype successfully generated code that
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exploits the accelerators for supported computations. Fur-
thermore, we demonstrate full-system deployment, running
D2A-generated code on physical hardware through FPGA
emulation.

4.3.1 Portability and Flexible Matching. Table 1 shows
the compilation statistics of using exact matching and flex-
ible matching. It describes the source language in which
the application is programmed (Row 2) and the program
complexity using the number of Relay operators as a proxy
(Row 3). It reports the number of invocations to FlexASR,
HLSCNN, and VTA when using exact/flexible matching in
Rows 4-6. Note that some invocations (IR-acclerator map-
pings) correspond to multiple Relay operators; in particular,
the 35-step FlexASR LSTM in LSTM-WLM is 566 operators
and maps to one FlexASR LSTM instruction (a dramatic gran-
ularity mismatch between DSL and accelerator operations).

Our results demonstrate portability with the successful
exploitation of accelerators for supported operations and
provide evidence for the utility of flexible matching. For
example, flexible matching revealed several offloads to Flex-
ASR’s linear layer in MobileNet-V2 by rewriting nn. dense to
nn.dense followed by an add of a zero tensor. Also note that
certain Glenside rewrites [68] that implement the im2col op-
timization [13] result in many more offloads to VTA in that
table; this is due to 2D convolutions being rewritten into ma-
trix multiplications. Hence, flexible matching allowed us to
support 2D convolutions on VTA even though our prototype
code generator did not explicitly implement 2D convolutions
via VTA instructions. This is an example of emergent effects
resulting from simple, reusable rewrite rules.

4.3.2 System Deployment and FPGA Emulation. To
demonstrate the D2A flow on a real hardware platform, we
synthesized, placed-and-routed the FlexASR accelerator on
a Xilinx Zynq ZCU102 FPGA, which consumed 86% of the
available LUT resources.> We utilized the Xilinx SDK [85] to
pass the accelerator instructions (MMIO commands) to the
accelerator interface for invoking the supported operations.
Specifically, we compiled and executed synthetic applica-
tion programs in which LSTM layers and linear layers are
offloaded to the FlexASR accelerator. This case study demon-
strates the applicability of D2A in actual system deployment
on a commodity hardware platform. Further, it shows that
in the absence of compilation-results validation enabled by
the D2A methodology, the need for a fully functional RTL
model and the significant engineering overhead indeed limit
early-stage software/hardware co-design.

4.4 Evaluation: Compilation-Results Validation

We want to check that the compiled program, in which parts
of the computation are offloaded to accelerators, retains the

3Due to the significant engineering overhead of FPGA emulation, FlexASR
is the only accelerator we deployed on an FPGA.
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Table 2. Simulation-based validation results of check-
ing IR-accelerator mappings (partial). The average rela-
tive error (Avg. Err.) and the standard deviation (Std. Dev.) of
the errors are measured for simulation over 100 test inputs.

’ \ Accelerator \ Operation | Avg. Err. \ Std. Dev. ‘

1| VTA GEMM 0.00% 0.00%
2 | HLSCNN Conv2D 1.78% 0.16%
3 | FlexASR LinearLayer 0.84% 0.29%
4 | FlexASR LSTM 1.21% 0.19%
5 | FlexASR LayerNorm 0.27% 0.20%
6 | FlexASR MaxPool 0.00% 0.0%
7 | FlexASR MeanPool 1.79% 0.28%
8 | FlexASR Attention 4.22% 0.09%

same functionality as intended with the IR semantics. Thus,
we use the IR ILA specification as the reference for formal
verification of the IR-accelerator mappings, and use an IR
interpreter as the reference when running simulation at two
levels: the operation level (for checking the IR-accelerator
mappings) and the application level.

4.4.1 Checking IR-Accelerator Mappings. Modern ac-
celerators often adopt custom numerics for achieving better
power-performance efficiency. For example, in our cases,
FlexASR and HLSCNN use the AdaptivFloat and 8/16-bit
fixed point data types, respectively. This means checking
the IR-accelerator mappings must account for the numerical
differences. To separate the effect of numerics and focus on
the definition of operations, we use abstract data types to
formally verify the equivalence (demonstrated through a
proof-of-concept case study). In addition, to precisely cap-
ture the numerical differences, we use simulation to compare
accelerator executions (using an ILA simulator) against the
IR semantics (using an IR interpreter).

Simulation-Based Validation. For checking the mappings
through simulation, we generated 100 random test inputs
and compared the outputs of the accelerator ILA simulator
and that of an IR interpreter. The accelerator ILA simula-
tors precisely model the data types used by the accelerators.
Specifically, VTA, HLSCNN, and FlexASR use 8-bit integer,
8/16-bit fixed point, and AdaptiveFloat, respectively. For the
IR interpreter, as a reference, we use 8-bit integer, 32-bit
floating point, and 32-bit floating point when checking oper-
ations of VTA, HLSCNN, and FlexASR, respectively. These
are respectively the closest standard datatypes to those used
by these accelerators. The relative errors are measured using
the standard Frobenius Norm [2] for the tensors as follows:
Error = HOutref - Outucc”F /HOutref”F.

Table 2 shows a selected subset of the validation results:
four IR-accelerator mappings (Rows 1-4) that are used in
the end-to-end compilation (Table 1) and four additional
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mappings for non-trivial operations (Rows 5-8). We omit val-
idation results of other mappings, e.g., for trivial operations
add and max. Columns 1 and 2 indicate the accelerator and
the supported operation for each IR-accelerator mapping,
respectively. Columns 3 and 4 provide the average relative
error and the standard deviation, respectively, over the 100
test inputs. For mappings that are not affected by numerical
differences, e.g., the VTA-supported GEMM, we see exact
matches in the results. For other mappings, we see devia-
tions caused by the custom numerics, especially for complex
operations such as the attention operation for FlexASR.

Proof-Based Formal Verification. The key challenges in
formally verifying mappings between fragments that repre-
sent DL computations include: (1) handling nested loops, for
both compiler side and accelerator side, that iterate through
tensor elements, and (2) relating tensor variables between
the two sides which may employ various tiling mechanisms.
As a proof-of-concept study, we considered the Relay and
FlexASR fragments for the FlexASR MaxPool IR-accelerator
mapping. These fragments both have 3+ nested loops, and
the relation between the two fragments must account for
a special customized tiling provided by FlexASR [71]. For
this study, we considered equivalence of the fragments over
fixed-sized tensors with symbolic data,? and implemented
verification using two methods: (1) bounded model checking
(BMC) [6], and (2) program verification using constrained
Horn clauses (CHCs) [40]. The BMC-based method unrolls
all the loops in both fragments, which is straightforward
but may fail to scale for large-sized tensors. The CHC-based
method is given a product program of the two fragments and
uses relational loop invariants, i.e., formulas that relate the
two fragments at intermediate loop boundaries (details are
beyond the scope of this paper). This avoids loop unrolling
and can handle large tensors. Both methods use Z3 [19] as
the underlying SMT solver.

While ILAng directly supports BMC, we manually created
CHCs for the CHC-based method. We also supplied the rela-
tional invariants that capture the customized tiling of Flex-
ASR. In future work, we plan to automate CHC generation,
which will allow formal verification of other IR-accelerator
mappings used in this paper. Table 3 shows the results for
this case study for various dimensions of the 2D input matrix
(Column 1), with runtimes of the BMC-based and CHC-based
verification methods in Columns 2 and 3, respectively. The
BMC-based method was able to verify equivalence of map-
pings with small-sized matrices, but timed out (with a 3-hour
time limit) on the 16 X 64 matrix that was used for simulation-
based validation. In contrast, the CHC-based method was
faster than BMC and successfully verified mappings with
larger matrices. These results are encouraging and demon-
strate how the D2A methodology enables formal verification
of key steps in the compilation flow.

4Formally modeling custom numerics is left to future work.
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Table 3. Formal verification case study: results for ver-
ifying the IR-accelerator mapping for FlexASR Max-
Pool. Experiments were run on an Intel Core i7-5500U CPU
(two 2.40GHz cores) with 8 GB RAM.

’ Matrix dim. \ BMC verif. time (s) \ CHC verif. time (s) ‘

2x16 443 38
4% 16 1976 37
4% 32 7954 146
8 X 64 Timeout (>3 hrs) 1831
16 X 64 Timeout (>3 hrs) 5177

4.4.2 Application-Level Co-Simulation. With the vali-
dated IR-accelerator mappings, we want to check if minor
deviations at the operation level will influence application-
level behavior. Therefore, we performed application-level
co-simulation on several applications which offload various
computations to FlexASR and HLSCNN, the two acceler-
ators that utilize custom numerics. Specifically, we exam-
ined LSTM-WLM and ResMLP, which offload to FlexASR
the LSTM layer and linear layer operations, respectively. We
also considered MobileNet and ResNet, which both offload
2D convolution and linear layer operations to HLSCNN and
FlexASR, respectively. (We compiled to two target acceler-
ators by including the IR-accelerator rewrite rules for both
accelerators.)

We trained and validated the LSTM-WLM model using
the WikiText-2 dataset [49]. The image classification models
(MobileNet-V2, ResMLP, and ResNet-20) were trained and
validated using the CIFAR-10 dataset [17]. Table 4 shows
the application-level co-simulation results. Columns 1 and 2
describe the application and the target processing platform
under evaluation, respectively. We provide a reference result
(perplexity for the text-generation task and inference accu-
racy for vision tasks) in Column 3 by running the application
on the host processor, i.e., not offloading to accelerators. The
validation result using original accelerator designs, labeled
“Original Result,” is provided in Column 4. For cases where
the “Original Result” was significantly poorer than the ref-
erence result, we reported it to the accelerator developers
for their further investigation. When they provided an ac-
celerator design modification to address this, we provide an
updated result, using this modified accelerator, in Column 5.
The average simulation time is reported in Column 6.

Case Study: ResNet-20 and MobileNet-V2. We reported
the original validation results of ResNet-20, which were far
from the 91.55% reference result, to the accelerator devel-
opers. We also provided statistics for each accelerator in-
vocation (e.g., error accumulation, input and output ranges,
etc.), gathered by our compiler prototype and ILA simulators.
With the information, the accelerator developers were able
to identify the root cause: weight data values in HLSCNN’s
2D convolutional layers were heavily quantized by its 8-bit
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Table 4. Application-Level Co-Simulation Results. In each validation, we evaluated 2000 images (for vision tasks) or 100
sentences (for text generation) that were evenly sampled from the corresponding dataset. The original result is measured using
original accelerator designs. The updated result is measured using modified designs provided by the accelerator developers.

’ Application \ Processing Platform \ Reference Result®

Original Result \ Updated Result \ Avg. Sim. Time' ‘

LSTM-WLM FlexASR 122.15 (perplexity)
ResMLP FlexASR 69.65% (accuracy)
ResNet-20 FlexASR & HLSCNN | 91.55% (accuracy)
MobileNet-V2 | FlexASR & HLSCNN | 92.40% (accuracy)

257.39 (perplexity) Reported 1min 10s
10.65% (accuracy) Reported 19min 15s
29.15% (accuracy) | 91.85% (accuracy) 14min 23s
10.35% (accuracy) | 91.20% (accuracy) 42min 26s

* The reference result does not represent the best achievable accuracy/perplexity of the model on the given dataset. This
table is intended for comparing the application-level results on different processing platforms.
T Average simulation time of running one data point (e.g., an image or a sentence) on a 2.4GHz AMD EPYC 7532 core.

fixed point data type due to a narrower value range. After
updating the design by expanding the original 8-bit represen-
tation to 16 bits, the application-level result matched up to
the reference result. The same tuning approach also resulted
in improved accuracy for MobileNet-V2.

The results in Table 4 reaffirm the need for application-
level validation, especially for accelerators utilizing custom
numerics. However, without a portable end-to-end compila-
tion flow, such application-level validation is prohibitively
difficult for new accelerators. Through our case studies, we
demonstrate how D2A provides systematic and automatic
compilation-results validation at the application level and
also show its usefulness in software/hardware co-design.
Specifically, with the ILA, D2A provides quick design space
exploration and numerics tuning without hardware engi-
neering overhead (e.g., deploying to FPGA) in each hardware
design iteration. Further, it provides handy debugging in-
formation and efficient simulation. (For FlexASR, we see a
30% speedup on average with the ILA simulator compared
to RTL simulation using a commercial Verilog simulator.)

5 Discussion and Future Work

The D2A methodology establishes a foundation for an end-
to-end, validatable compilation flow for accelerator-rich plat-
forms. Our prototype not only provides a working imple-
mentation, but also an experimental framework for future
research in this area. Thus far, we have demonstrated how
flexible matching, mapping validation, and application-level
co-simulation are enabled by D2A. Below we discuss two
example near-term extensions ripe for further exploration
and inclusion in D2A-based frameworks.

5.1 Optimizing Data Transfers

As a motivating example, we consider an image processing
application with a 2D max-pooling layer that we would like
to offload to FlexASR. Suppose that the max-pooling layer
uses a window with shape (4, 4) and stride (2, 2) and is used
to downsample a 128 X 128 matrix into a 64 X 64 matrix.
However, FlexASR does not directly support this window
or stride size. Instead, it supports a related operation called
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temporal max-pooling, which corresponds to 2D max-pool
with a fixed window of shape (2, 1) and stride (2,1). The
following IR-accelerator rewrite rule represents an offload-
ing of the temporal max-pooling operation, where the IR
fragment is shown on the left of the arrow, and the FlexASR
fragment on the right (?T in the pattern denotes the input
matrix; fragments are shown as S-expressions).

1 \ ; Rewrite rule for IR-accelerator mapping
2 | (map reduceMax (windows (2, 1) (2, 1) ?T)) ->
3 \ (fasrMaxpLoad (fasrMaxpool (fasrMaxpStore ?T)))

By using flexible matching, our prototype found the follow-
ing rewritten IR program for the 2D max-pooling layer:

; Rewritten IR program for window (4, 4), stride (2,
; T denotes the input to the 2D max-pooling layer

; S is the shape of the output of the 2D max-pooling layer
(reshape (map reduceMax (windows (2, 1) (2, 1)

(map reduceMax (windows (2, 1) (2, 1)

(map reduceMax (windows (2, 1) (2, 1)

(map reduceMax (windows (2, 1) (2, 1)

(map flatten (windows (4, 4) (2, 2) T))

) S

2)

© 0N U A WN =

Then the IR-accelerator rules above rewrite each of these
four map reduceMax instances to the FlexASR fragment. The
listings for this example are in Figure 7 of Appendix C, with
the result of applying the IR-accelerator mapping in part (d).

Note that each of the map reduceMax instances in the re-
written IR program is mapped to a composition of three
FlexASR instructions (as shown in the IR-accelerator map-
ping rewrite rule), where fasrMaxpStore stores the input data
into FlexASR, fasrMaxPool performs the maxpool computa-
tion in FlexASR, and fasrMaxpLoad loads the output result
from FlexASR. When four of these instances are composed,
the initial store and the final load are needed to communi-
cate with FlexASR; however, the other intermediate transfers
can be eliminated, since the output of one instance serves
as input of another. We plan to enhance our prototype to
cancel such redundant transfers, with the final optimized
result shown in part (f) of Figure 7 in Appendix C.

This example illustrates the importance of minimizing
data transfers while offloading operations to accelerators.
Note that a fixed set of accelerator APIs may not allow such



arXiv, 2022, USA

optimizations, whereas D2A provides this flexibility through
individual accelerator instructions. In future work, we would
like to consider more general optimizations on the acceler-
ator side that account for memory organization and data
movement, potentially leveraging standard register alloca-
tion as well as recent DL operator fusion techniques [54].

5.2 Extending Formal Verification of Mappings

In our study (§ 4.4.1), we explored CHC-based verification
of IR-accelerator mappings for fixed-size tensors (with sym-
bolic data) and supplied relational loop invariants to the
verifier. In future work, we would like to add support for
symbolic-sized tensors and automatic inference of relational
loop invariants. Additionally, our simulation validation re-
veals that custom numerics can significantly impact model
accuracy. We would like to extend our verification to account
for custom numerics and check or derive error bounds.

6 Related Work

The key insight of the D2A methodology is using the ILA
as a formal software/hardware interface for mapping DSL
applications to specialized accelerators. Below we survey
past work on different aspects of D2A’s features.

6.1 Software/Hardware Co-design

Recent work on accelerator generation and integration [4,
76] has explored adding support in the Halide [59] compiler
flow for specialized Coarse-Grained Reconfigurable Array
(CGRA) accelerators. That work composes an impressive ar-
ray of custom tools to generate and verify specialized CGRA
accelerators and also map Halide program fragments down
to accelerator invocations. HeteroCL [42] also provides a
similar custom flow. In contrast, the D2A methodology is
designed to support software/hardware co-design by miti-
gating impedance mismatches between the granularity of in-
dependently developed DSLs and near-arbitrary accelerators;
because of the flexibility of the ILA, the D2A methodology is
applicable to a broader class of compilers and accelerators.

6.2 Pattern Matching Accelerator Calls

In principle, many DSLs allow for supporting custom acceler-
ators via bespoke translations from DSL operators to specific
accelerator APIs, e.g., as in the original TVM [14] support
for VTA [50]. TVM’s BYOC [16] interface eases incorpo-
rating custom accelerators by performing syntactic pattern
matching to offload computations via user-provided code
generators. However, BYOC leaves all matters of code genera-
tion, e.g., MMIO invocations, to the user, while D2A provides
more structure to code generation via the ILA. In particular,
the ILA provides useful simulation and verification capabili-
ties. Additionally, BYOC’s pattern matching cannot search
the space of programs equivalent to the input, limiting the
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number of potential accelerator invocations compared to
flexible matching in our D2A prototype.

The MLIR framework [44] provides a rich metalanguage
and numerous tools for developing, optimizing, and translat-
ing between custom compiler IRs, but does not inherently
provide direct support for D2A’s features. It would be possi-
ble to realize the D2A methodology within an MLIR-based
ecosystem; we implemented our DL-focused prototype using
TVM since it allowed leveraging more DL infrastructure.

Past work has also explored rewrite-based techniques for
automatically inferring instruction selection passes between
ISAs [60]. Rewriting in D2A instead operates on a high-
level DSL to expose opportunities to invoke code generators,
rather than performing low-level code generation directly.

6.3 Validating and Verifying Accelerator Calls

Tools like Verilator [78] and Cuttlesim [58] enable efficient
RTL-level simulation, but do not provide reusable interfaces
or flexible matching to incorporate custom accelerators into
existing compiler flows. Formally verified compilers such as
CompCert [45] and CakeML [41] can rigorously establish
end-to-end equivalence from high-level source code down to
assembly for various CPU back-ends via machine-checkable
proofs, but currently do not provide a general approach for
integrating new accelerator support and provide no support
for custom numerics. In contrast, D2A enables validating
accelerator mappings via end-to-end simulation handling
custom numerics and formally verifying individual rewrite
rules from compiler IR patterns to accelerator invocations.

7 Conclusions

In this work we address key gaps preventing effective accel-
erator utilization under the prevalent API-based approach.
Specifically, we highlight the lack of portability, the inability
to integrate accelerators into optimizing compilers, and the
inability to validate generated code. We show that the root of
these gaps is the lack of a formal software/hardware interface
for accelerators, and use the recently developed ILA specifi-
cation for this purpose in our proposed D2A methodology.
We describe a D2A prototype for DL applications using the
TVM and ILAng frameworks. We evaluate the capabilities of
this prototype through the fully automated compilation of
six applications on three different accelerator platforms. We
show the convenience of equality saturation—-based flexible
matching by mapping of a larger set of accelerator-supported
operations in DSL applications than is possible using exact
matching. We also discuss case studies that highlight the
ability to (a) formally verify the equivalence of compiler IR
to accelerator mappings of individual accelerator operations
(using abstract data types) and (b) do automated application-
level simulation-based validation using the accelerator nu-
merics to check the acceptability of application-level results
even with deviations at the operation level due to numerics.
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The latter exposed precision issues in various case studies
which required modification of the accelerator numerics,
demonstrating its use in software/hardware co-design. Other
than the device ILAs, integration into the compiler required
only a small number of Glenside rewrite rules and a small
code generator mapping matched patterns to ILA instruc-
tions. We believe this is the first compiler framework that
addresses the multiple issues in effective accelerator utiliza-
tion and establishes a foundation that can democratize the
end-to-end mapping of applications in DSLs to accelerator-rich
platforms, no longer limiting it to large enterprises that can
afford teams of hardware, software, and system experts.
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Appendix A Supported Accelerator
Operations

For each of the accelerators discussed in § 4.1, our prototype
compiler supports specific operations through the compiler-
IR accelerator mappings.

FlexASR. The compiler supports two of FlexASR’s opera-
tions: linear layers (illustrated in Figure 5) and LSTM layers.
For simplicity, the pattern we match for the LSTM layer in
exact matching is precisely the formulation of an LSTM pro-
duced by TVM’s PyTorch importer, which is “unrolled” to
the correct number of timesteps (35 in the case of our LSTM-
WLM application). For flexible matching, we translate the
“unrolled” LSTM in Relay into Glenside and also match it in
the target Glenside program. In principle, it would be possi-
ble to define a rewrite rule corresponding to a single LSTM
timestep, and another rewrite to “fold” adjacent timesteps
into a single FlexASR LSTM layer invocation (one ILA in-
struction) with the total number of timesteps.

HLSCNN. Our HLSCNN specification has only one opera-
tion, a non-grouped 2D convolution. In Relay and Glenside,
we map any non-grouped 2D convolution (nn.conv2d) to
the HLSCNN convolution operation. Note that the Relay
convolution operation allows for padding an input before
convolving it; our implementation pads on the host before
invoking the accelerator. In principle, it would be possible
to rewrite a grouped convolution into a concatenation of
non-grouped convolutions, but the number of groups in the
models in § 4.2 tended to be large (960 groups in MobileNet),
which would blow up the programs and be impractical to
run on a single device.

VTA. Unlike the above accelerators, VTA is a fine-grained
programmable accelerator with a defined ISA. Hence, “op-
erators” in VTA are really sequences of VTA instructions
that implement the semantics of a tensor operator in Relay.
TVM has a built-in bespoke code generator for VTA, which
operates on TVM’s lower-level Halide-like DSL and directly
implements arbitrary tensor operations for VTA. In princi-
ple, it would be possible for us to adapt the existing VTA
code generator to instead output VTA ILA instructions, re-
sembling traditional instruction selection. For simplicity, our
prototype implements matrix multiplication and addition as
fixed sequences of VTA ILA instructions.

Appendix B Application Parameters
We provide further details for the applications listed in § 4.2.

o EfficientNet: We used a publicly available implemen-
tation of EfficientNet® in MxNet, pretrained on Ima-
geNet (image size 224 x 224, with 1000 classes). We
imported it through TVM’s MxNet importer.

5h‘rtps://githubA:om/mnikitin/EfﬁcientNet, accessed Nov. 18, 2021.
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o LSTM-WLM: We used the LSTM model implementa-
tion from the official PyTorch examples repository,’
training on WikiText-2 with the provided script on
the following settings: 40 epochs, a batch size of 20,
sequence length of 35, and an initial learning rate of
20, with a single layer for the LSTM. We imported
it through TVM’s PyTorch importer with one simpli-
fication in the importer: for simplicity, our FlexASR
LSTM layer integration only returned the LSTM’s se-
quence output but not the final hidden and cell states
(even though the device itself supports this). In order to
match the semantics between our integration and the
LSTM, we modified the imported LSTM not to return
the final hidden and cell states either. In future work, it
would be feasible for us to support returning the final
hidden and cell states and eliminate this simplification.

e MobileNet V2: We used an open-source implemen-
tation of MobileNetV2” in PyTorch and used the im-
plementation’s provided script to train on CIFAR-10,
training for 200 epochs with a learning rate of 0.01
and a batch size of 128. We imported it using TVM’s
PyTorch importer.

e ResMLP: We used an open-source ResMLP implemen-
tation® in PyTorch. We used similar parameters as
those reported in [75] for training on CIFAR: 384 fea-
tures, 12 layers, and a patch size of 16. We trained it on
CIFAR-10 for 100 epochs with a learning rate of 0.01,
though in Table 4, we note that we obtained a lower
reference accuracy on CIFAR-10 than that reported
in [75]. We are not certain that we trained using all
the same settings as in the original work and (in order
to reduce the load on the simulator) we trained and
evaluated on 3232 images, whereas the original work
scaled the images up to 256 X 256. We imported the
model through TVM’s PyTorch importer.

e ResNet-20: We used the Gluon Model Zoo’s imple-
mentation of ResNet-20 in MxNet,’ pretrained on CIFAR-
10. We imported it unmodified through TVM’s MxNet
importer.

e Transformer: We used the nn.Transformer imple-
mentation from PyTorch, with 8 heads, 6 encoder lay-
ers, 6 decoder layers, and 256 features (left untrained).
These settings were based on a TVM PyTorch importer
unit test.

Appendix C Illustrative Code Fragments

The figures below provide examples of ILA fragments and
various rewrites at greater length.

Shttps://github.com/pytorch/examples/tree/master/word_language_
model, accessed Nov. 18, 2021.
Thttps://github.com/kuangliu/pytorch-cifar, accessed Nov. 18, 2021.
8https://github.com/lucidrains/res-mlp-pytorch, accessed Nov. 18, 2021.
®https://cv.gluon.ai/api/model_zoo.html#gluoncv.model_zoo.cifar_
resnet20_v1, accessed Nov. 18, 2021.
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(a) Compiler IR instructions

ComILA.relay_nn_dense
ComILA.relay_bias_add

(b) Compiler IR ILA program fragment

// 1. writing data into the accelerator memory
FlexASR_ILA.write_v

// 2. configuring the accelerator for executing linear layer operation
FlexASR_ILA.pe_cfg_rnn_layer_sizing

FlexASR_ILA.pe_cfg_mngr

FlexASR_ILA.pe_cfg_act_mngr

FlexASR_ILA.pe_cfg_act_v

FlexASR_ILA.gb_cfg_mmngr_gb_large
FlexASR_ILA.gb_cfg_gb_control

// 3. triggering the accelerator linear function
FlexASR_ILA.fn_start

// 4. reading data out from the accelerator memory (if needed)
FlexASR_ILA.read_v

(c) FlexASR ILA program fragment

// 1. writing data into the accelerator memory
Write, addr=0xA4500000, data=0xQFQEFFBF8F746F9FB58D148EQEB7BFDAD

// 2. configurating the accelerator states for linear layer operation
Write, addr=0xA4400010, data=0x0010101000001

Write, addr=0xA4400020, data=0x0000000010000000102020200

Write, addr=0xA4800010, data=0x0000000000102050001

// 3. triggering the accelerator function

Write, addr=0xA3000010, data=0x1

// 4. reading data out from the accelerator memory (if needed)
Read, addr=0xA3500200, data=0x0

(d) FlexASR MMIO commands
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Figure 5. IR-accelerator mapping for the FlexASR LinearLayer operation. This shows a many-to-many mapping from
Relay IR instrucions to a sequence of FlexASR MMIO commands. (a) LinearLayer in Relay consists of a linear transformation
operation nn.dense, followed by a bias addition operation nn.bias_add. (b) The compiler IR ILA instruction has an one-to-
one mapping to the compiler IR instruction. (c) The FlexASR ILA program fragment in its assembly format: It includes: (1)
write instructions to transfer the data into FlexASR’s memory. (2) setting up FlexASR LinearLayer configuration states, for
example, the instruction at line 5 sets the states of FlexASR layer sizing information. (3) instruction that triggers the FlexASR
LinearLayer computation (5) read data out from FlexASR’s memory if needed. (d) The MMIO commands for FlexASR have a
one-to-one mapping to its FlexASR ILA instructions.
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1 | #include <ilang/ilang++.h>

2 |

3| int main() {

4 \ // declare an ILA model module

5 \ auto m = ilang::Ila("flexasr-ila");

6 |

7 \ // declare model interface input ports

8 ‘ m.NewBvInput("top_if_wr", TOP_IF_WR_BITWIDTH);

9 \ m.NewBvInput("top_if_rd", TOP_IF_RD_BITWIDTH);

10 \ m.NewBvInput("top_addr_in", TOP_ADDR_IN_BITWIDTH);

11 ‘ m.NewBvInput("top_data_in", TOP_DATA_IN_BITWIDTH);

12 |

13 \ // declare architectural states

14 \ m.NewBvState("pe_0_is_valid", PE_VALID_BITWIDTH);

15 \ m.NewBvState("pe_0_is_bias", PE_IS_BIAS_BITWIDTH);

16 ...

17 | m.NewMemState("gb_large_buffer", TOP_ADDR_IN_BITWIDTH, TOP_DATA_IN_BITWIDTH);
18] ...

19 | // define ILA instructions

20 \ { // ILA instruction for configuring pe_cfg_mngr

21 \ auto instr = m.NewInstr("pe_0_cfg_mngr");

22 |

23 \ // define decode condition for this instruction

24 \ auto is_write = (m.input("top_if_wr") == 1) & (m.input("top_if_rd") == 0);
25 \ instr.SetDecode(is_write & (m.input("top_addr_in") == PE_@Q_CFG_MNGR_ADDR));
26 |

27 \ // define state update functions for this instruction

28 \ auto is_valid = ilang::SelectBit(m.input("top_data_in"), PE_IS_VALID_BIT_IDX);
29 \ instr.SetUpdate(m.state("pe_0_is_valid"), is_valid);

30 \ auto is_bias = ilang::SelectBit(m.input("top_data_in"), PE_IS_BIAS_BIT_IDX);
31 \ instr.SetUpdate(m.state("pe_0_is_bias"), is_bias);

2] ...

33 3

34 | // other ILA instructions

35 ...

36 | 3}

Figure 6. FlexASR ILA model snippet. Lines 5-18 define the FlexASR ILA model, its input and architectural states variables.
Lines 20-32 shows an example of an ILA instruction named “pe_0_cfg_mngr,” which corresponds to line 6 in Figure 5 (c). In
each ILA instruction, we specify its decode condition and state update functions. For example, in this instruction, the decode
condition (line 24-25) is when there is write instruction at the top interface to the address associated with the configuration of
the PE’s management configuration. Lines 27-32 show this instruction’s state update functions for the architectural states.
In this example, this ILA instruction models the behavior of storing the arguments from the input data at its interface into
the FlexASR configuration registers. From this example, we can see that the ILA instructions provide an abstraction of the
functionality of the accelerator corresponding to the MMIO instructions at its interface.
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1 \ ; (a) IR-accelerator rewrite rule for FlexASR's temporal max-pooling (which corresponds to

2 ‘ ; 2D max-pooling with window shape and stride (2, 1))

3 \ (map reduceMax (windows (2, 1) (2, 1) ?T)) -> (fasrMaxpLoad (fasrMaxpool (fasrMaxpStore ?T)))
4

5 ‘ ; (b) Initial Glenside program for a 2D max-pooling layer with window shape (4, 4)

6 \ ; and stride (2, 2). We use T to denote the input of the 2D max-pooling layer

7 \ (map reduceMax (windows (4, 4) (2, 2) T))

8 |

9 \ ; (c) A rewritten IR program found via Glenside

10 \ ; T denotes the input of the 2D max-pooling layer, and S is the shape of the output of the 2D max-pooling layer
11 | (reshape (map reduceMax (windows (2, 1) (2, 1)

12 \ (map reduceMax (windows (2, 1) (2, 1)

13 | (map reduceMax (windows (2, 1) (2, 1)

14 | (map reduceMax (windows (2, 1) (2, 1)

15 \ (map flatten (windows (4, 4) (2, 2) T)) )N S)

16 |

17 ‘ ; (d) 2D max-pooling using FlexASR

18 \ (reshape (fasrMaxpLoad (fasrMaxpool (fasrMaxpStore

19 ‘ (fasrMaxpLoad (fasrMaxpool (fasrMaxpStore

20 \ (fasrMaxpLoad (fasrMaxpool (fasrMaxpStore

21 \ (fasrMaxpLoad (fasrMaxpool (fasrMaxpStore

22 \ (map flatten (windows (4, 4) (2, 2) D) YNNI NN) S

23 |

24 \ ; (e) IR-accelerator rewrite rule to remove redundant Store-Loads

25 ‘ ; Loading data out of the accelerator only to store it back to the same location is unnecessary
26 \ (fasrMaxpStore (fasrMaxpLoad ?T) -> ?T

27 |

28 ‘ ; (f) Optimized 2D max-pooling using FlexASR

29 \ (reshape (fasrMaxpLoad (fasrMaxpool (fasrMaxpool (fasrMaxpool (fasrMaxpool (fasrMaxpStore

30 \ (map flatten (windows (4, 4) (2, 2) T)) DN S)

Figure 7. How D2A offloads 2D max-pooling to FlexASR’s temporal max-pooling operation. (a) The IR-accelerator
rewrite rule for FlexASR’s temporal max-pooling operation. (b) A Glenside program for a 2D max-pooling layer with window
shape (4, 4) and stride (2, 2). Note that it does not contain a match for the left-hand side of the IR-accelerator rewrite rule.
(c) An equivalent rewritten IR program found by flexible matching. It contains four instances of the left-hand side of the
IR-accelerator rewrite rule. (d) A program offloading the 2D max-pooling layer to FlexASR produced by replacing each of the
four instances with the right-hand side of the IR-accelerator rule. Note that in this program, the initial store and the final load
are needed to communicate with FlexASR; however, the other intermediate loads/stores can be eliminated, since the output of
one instance serves as input of another. (e) Another IR-accelerator rewrite rule that removes redundant Store-Loads. (f) An
optimized program produced by applying the new rewrite rule. This program only performs a single (matrix) store at the start
of the operation and a single (matrix) load to read the output at the end of the operation. In future, we hope to generalize this
example and consider memory organization in accelerators and data-movement for optimizing data transfers.
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