
RecPipe: Co-designing Models and Hardware to Jointly
Optimize Recommendation Quality and Performance

Udit Gupta1,2, Samuel Hsia1, Jeff (Jun) Zhang1, Mark Wilkening1, Javin Pombra1,
Hsien-Hsin S. Lee2, Gu-Yeon Wei1, Carole-Jean Wu2, David Brooks1

1Harvard University, 2Facebook AI Research

ugupta@g.harvard.edu

ABSTRACT
Deep learning recommendation systems must provide high
quality, personalized content under strict tail-latency targets
and high system loads. This paper presents RecPipe, a sys-
tem to jointly optimize recommendation quality and inference
performance. Central to RecPipe is decomposing recommen-
dation models into multi-stage pipelines to maintain quality
while reducing compute complexity and exposing distinct
parallelism opportunities. RecPipe implements an inference
scheduler to map multi-stage recommendation engines onto
commodity, heterogeneous platforms (e.g., CPUs, GPUs).
While the hardware-aware scheduling improves ranking ef-
ficiency, the commodity platforms suffer from many lim-
itations requiring specialized hardware. Thus, we design
RecPipeAccel (RPAccel), a custom accelerator that jointly
optimizes quality, tail-latency, and system throughput. RPAc-
cel is designed specifically to exploit the distinct design space
opened via RecPipe. In particular, RPAccel processes queries
in sub-batches to pipeline recommendation stages, imple-
ments dual static and dynamic embedding caches, a set of
top-k filtering units, and a reconfigurable systolic array. Com-
pared to prior-art and at iso-quality, we demonstrate that
RPAccel improves latency and throughput by 3× and 6×.

1. Introduction
Deep neural network (DNN) based recommendation sys-

tems constitute an overwhelming fraction of AI cycles in
production data centers (e.g., Facebook, Google, Alibaba) [1,
18, 21, 22, 30, 51, 58, 59, 60]. To improve content personaliza-
tion in a wide range of services (e.g., search, e-commerce,
movie and video-streaming, social media), the size of pro-
duction recommendation models has grown by over 10×
between 2017 and 2020 [39, 56, 57].

In response to the dramatic increase in infrastructure de-
mands from the ever-increasing model complexity, system-
and architecture-level solutions are customized for DNN-
based recommendation, including inference schedulers [16],
near memory processing hardware [33, 36, 49], and special-
ized accelerators [9, 26, 29]. These prior solutions assume
fixed models, leaving significant room for efficiency opti-
mization. Evidenced by recent work optimizing DNNs for
computer vision and natural language processing [17, 19, 24,

RecPipe Increasing model complexity ()

ML Focus: Quality
DL-based models
Multi-stage rec.

Multi-stage ranking funnel

HW optimation: CPU, GPU, RPAccel
Metrics: Quality, Latency, Throughput

One-stage
Two-stage

One-stage
Two-stage

7.5x

4x

Input
items

Decreasing items to rank ()

(a) (b)

(c)

HW Focus: Efficiency
Near memory processing

Specialized hardware

Commodity HW
HW-aware multi-
stage inference

scheduler

RecPipeAccel
Multi-stage aware

accel. design for quality,
latency, throughput

Figure 1: (a) Compared to prior work from machine
learning and hardware researchers, this work jointly op-
timizes quality and performance. (b) RecPipe co-designs
models and hardware across multi-stage recommenda-
tion pipelines. (c) Transforming monolithic models into
multiple stages reduces overall compute demand and em-
bedding memory accesses by 7.5× and 4.0×, respectively.

43, 45, 47, 53], co-designing models with hardware is an ef-
fective approach. However, the model accuracy requirement
for recommendation tasks is stringent [59, 60], making the
model-hardware co-design space challenging to navigate.

While accuracy represents a model’s ability to predict
whether users will like individual items, production services
are designed to serve users a personalized collection of rel-
evant items [5, 28]. As such, while accuracy is intrinsic to
models, quality is optimized by improving model accuracy
and increasing the number of items ranked at the same time.
The more holistic, application-level quality objective allows
system architects to judiciously trade off accuracy for perfor-
mance, opening new design spaces for system optimization.

Ranking all items with complex models is wasteful—only
a small portion of items are relevant to individual users. Tra-
ditionally, recommendation engines achieve high quality by
ranking a large number of input candidate items using com-
plex DNNs. The combination of large input working set sizes
and complex models incurs high performance overheads. Al-
ternatively, one can decompose a monolithic ranking model

1

ar
X

iv
:2

10
5.

08
82

0v
2

 [
cs

.A
R

]
 2

2
M

ay
 2

02
1

into multiple stages to maintain overall quality at higher per-
formance [27, 32, 58]. By splitting the monolithic model into
two, a frontend model coarsely filters relevant items while
a more accurate backend model finely ranks items to serve.
Further segmenting the pipeline into additional stages cre-
ates a ranking funnel (Figure 1 (b)) where complex models
only rank items requiring accurate differentiation. For the
Criteo dataset and Facebook’s Deep Learning Recommen-
dation Model (DLRM) [31, 41], Figure 1(c) shows that, at
iso-quality, compared to single-stage, multi-stage recommen-
dation reduces memory and compute demands by 4.0× and
7.5×, respectively. This system-level view optimizing qual-
ity and efficiency motivates a new generation of hardware
solutions for multi-stage recommendation.

Driven by this motivation, we propose RecPipe, a system to
co-design recommendation models and hardware to improve
both quality and performance (Figure 1(a)). Frontend stages
pair light-weight models (e.g., low compute and memory
demands) with large input sizes, exposing data-parallelism.
Backend stages pair heavy-weight models (e.g., billions of
FLOPs, many GBs of storage) with small input sizes, expos-
ing model-parallelism instead. RecPipe’s system solutions
exploit these distinct parallelism opportunities to jointly opti-
mize quality, throughput, and tail-latency.

To understand the limits of commodity platforms, RecPipe
implements an inference scheduler that maps each recom-
mendation stage across heterogeneous hardware (e.g., CPU,
GPU) to maximize performance. We find the optimal map-
ping depends on the application level targets and underlying
hardware. Despite the tight co-design between models and
hardware, we find commodity CPU-GPU systems do not fully
exploit the benefits of multi-stage recommendation as they
suffer from low utilization and high PCIe communication
overheads between stages.

To address these limitations, we design RecPipeAccel
(RPAccel), a specialized accelerator for multi-stage recom-
mendation. Starting with a TPU-like, systolic array-based,
recommendation accelerator [26], RPAccel’s hardware op-
timizations improve efficiency at low area and power over-
heads. First, RPAccel implements a reconfigurable systolic
array that allows the hardware to concurrently process models
across recommendation stages. RecPipe’s inference sched-
uler provisions the fraction of systolic array resources to de-
vote to frontend and backend stages based on application load,
balancing latency and throughput. Next, RPAccel eliminates
high PCIe communication overheads to the host processor
by implementing multiple on-chip filtering units to identify
the top-k user-item interactions between stages. Finally, to
overlap frontend and backend query processing, RPAccel
breaks queries into sub-batches to pipeline stages and pre-
fetch embedding vectors in separate caches.

The main contributions of this work include:

1. We propose a new system, RecPipe, that enables design
space exploration and optimization for multi-stage rec-
ommendation inference. The framework integrates data
sets (e.g., MovieLens [20], Criteo [31]), models (e.g., neu-
ral matrix factorization [23], DLRM [41]), and hardware
(e.g., CPU, GPU, simulated accelerators) to study trade-
offs among quality, tail-latency, and throughput.

Pareto-optimal models

 Size 2Latent vector size: Size 4 Size 8 Size 16 Size 32

RMSmall

RMmed

RMlarge

C
an

di
da

te
 it

em
s

Continuous
 inputs

Categorical
inputs

Embeddings

Embeddings

MLP-Bot
Depth/Width

…

N

N Pooling

Latent vec. size
Feature

interaction MLP
TopDepth/

width

U
se

r-i
te

m
 s

co
re

s

N

Not drawn to scale of op. sizes

Figure 2: (Top) General recommendation model archi-
tecture configured by embedding dimension and MLP
size (outlined in red). (Bottom) Hyperparameter sweep
shows tradeoff between model complexity and error.

Model RMsmall RMmed RMlarge
Embedding Dim. 4 16 32

MLP-Bottom 13-64-4 13-64-16 13-512-256-128-64-32
MLP-Top 64-1 64-1 96-1

Model Size 1GB 4GB 8GB
FLOPs 1.1K 2.0K 180K

Model Error 21.36% 21.26% 21.13%

Table 1: Pareto-optimal recommendation models.

2. We show designing and efficiently scheduling multi-stage
pipelines for available commodity hardware platform re-
duces tail-latency by 4× and 3× on CPUs and heteroge-
neous CPU-GPU hardware, respectively.

3. We design RPAccel, a novel accelerator that exploits
the distinct properties of multi-stage recommendation to
jointly optimize quality, latency, and throughput. Com-
pared to a state-of-the-art baseline accelerator [26], RPAc-
cel’s software and hardware optimizations reduce tail-
latency by 3× and increases throughput by 6×, at iso-
quality as well as negligible area and power overheads.

2. Motivation: Widening Design Space by Op-
timizing for Quality over Accuracy Alone

Prior work on specialized systems for deep learning co-
optimizes for model accuracy and run-time efficiency (perfor-
mance, power, and energy) [17, 19, 24, 43, 45, 47]. For neural
recommendation however, hardware designers must go one
step further, beyond accuracy, and optimize for quality. In
this section, we first describe recommendation model archi-
tectures and conduct a model hyper-parameter sweep. Then,
we introduce the quality metric used in this work, showing
the fundamental difference between accuracy and quality.

2.1 Training hyperparameter sweep
Figure 2(top) lays out the general architecture for DNN

recommendation models [18, 41]. Continuous input features

2

Items ranked
25

6
51

2
10

24
20

48
40

96

91.3

Rec. Model

Sm
al

l

M
ed

.

La
rg

e

Rec. Model

Sm
al

l

M
ed

.

La
rg

e

RMsmall RMmed RMlarge
Error depends on
model complexity

Quality depends on items to rank and model complexity

Figure 3: While accuracy depends only on model size
(left), recommendation quality depends on number of
items ranked (center) and model size (right).

are processed with DNN layers, e.g. Multi Layer Percep-
trons (MLP), while sparse input features are processed us-
ing embedding tables. Embedding tables are organized as
a collection of embedding vectors with tens to hundreds of
latent features. Latent features map sparse inputs to low-
dimensional, dense ones. By configuring the main network
components (i.e., MLP depth/width, embedding latent vec-
tor dimension), highlighted in red, we realize models with
varying storage capacity, compute demands, and accuracy.

Figure 2(bottom) shows a hyperparameter sweep by tuning
the main network parameters for Facebook’s DLRM trained
on the Criteo dataset [31, 41]. Increasing the computational
complexity of models reduces the test error. Models with
1.1K FLOPs and 180K FLOPs observe an error of 21.36%
and 21.13%, respectively. Note, a 0.23% decrease in error
is large given the high sparsity of user-item interactions in
recommendation use cases [59, 60]. Recent industry publica-
tions show reductions of even 0.1% error greatly improve user
experience in real world applications [59, 60]. Table 1 shows
the tradeoff between model error and complexity across three
Pareto-optimal networks (i.e., RMsmall, RMmed, RMlarge).

2.2 Quality versus accuracy
A model’s accuracy represents its ability to correctly pre-

dict a user will positively interact with a single item. However,
in recommendation, models rank thousands of items opening
the door for measuring overall quality. Quality measures
the relevance of the entire collection of items presented to
users based on their personal preferences. Following recent
work from machine learning and recommendation systems
researchers, we use normalized discounted cumulative gain
(NDCG) to quantify the quality of the ordered list of out-
put items. NDCG [5, 28] is the ratio between the measured
and the ideal ordering, each of which is computed using
discounted cumulative gain (DCG): for a list of N items,
DCG = ∑

N
i

Reli
log2(i+1) . Reli represents item i’s score in the

measured or ideal list and log2(i+1) discounts its relevance—
dividing the score by the item’s position in the list.

Widening design space. Compared to accuracy, optimiz-
ing for quality opens new system design opportunities. For
the Criteo dataset, Figure 3 illustrates the impact of varying
the number of items ranked (x-axis) and model architecture
(i.e., RMsmall, RMmed, RMlarge) on quality. Empirically, the
improvement in quality from increasing number of items
ranked overshadows that from larger, more accurate models.

Note, the highest quality of 92.25 can be achieved by ranking
all 4096 items with RMlarge. However, as shown in Figure 1,
decomposing monolithic models into multiple stages, where
small models filter relevant items and large models perform
fine-grained ranking, improves computational efficiency at
iso-quality. At the frontend, candidate items are coarsely
ranked with models that incur memory and compute demands.
This reduces the list of candidate items (i.e., working set size)
incrementally over the stages. Subsequent stages use larger
models for finer-grained ranking. Going beyond accuracy,
quality depends on the number of stages, network architec-
tures, and the number of items ranked at run-time: widening
the design space to co-optimize performance and quality.

3. RecPipe Design: A System to Optimize Multi-
Stage Recommendation Inference

We propose RecPipe, a novel system to explore the model-
and hardware-level design space to collectively optimize rec-
ommendation quality, tail-latency, and system throughput.
Figure 4(left) shows RecPipe’s multi-step design process.
The input to RecPipe is a Pareto-frontier of recommendation
models balancing model accuracy and complexity. To co-
optimize quality and hardware efficiency on commodity plat-
forms, RecPipe balances multi-stage parameters and statically
schedules each stage across available hardware resources (i.e.,
CPUs and GPUs). Going further, RecPipe exposes distinct
parallelism opportunities that are exploited by designing spe-
cialized hardware. Figure 4(right) illustrates the multi-stage
recommendation pipeline and the design space optimized by
RecPipe. The model-level and hardware-level design parame-
ters are highlighted in red. We detail how RecPipe co-designs
these parameters to maximize quality and performance below.

3.1 Hardware-aware multi-stage scheduling
RecPipe implements a post-training, inference scheduler

customized for multi-stage recommendation. In step 1, RecPipe
balances multi-stage modeling parameters. In step 2, RecPipe
exploits the parallelism opportunities exposed from step 1,
and maps stages across heterogeneous hardware.

Algorithmic scaling (Step 1). RecPipe exhaustively ex-
plores the design space of pairing Pareto-optimal recommen-
dation models and number of items to rank at each stage in the
multi-stage pipeline. In the frontend, lightweight models are
paired with large working set sizes exhibiting high data-level
parallelism; in the backend heavyweight models are paired
with smaller working set sizes exhibiting high model-level
parallelism. By collectively balancing model complexity and
input working set size, RecPipe maximizes overall quality
under strict latency targets and system loads.

Heterogeneous hardware mapping (Step 2). Given the
distinct parallelism opportunities from the aforementioned
algorithmic scaling step, RecPipe exhaustively explores the
mapping of multi-stage models on available hardware at the
stage granularity. We begin by considering commodity hard-
ware platforms i.e., CPUs and GPUs. GPUs implement a
highly data-parallel architecture that parallelize individual
queries, especially in the frontend with large working set
sizes. On the other hand, many-core CPUs can simultane-
ously process multiple queries providing high-throughput.
RecPipe exploits these architectural differences to schedule

3

Filtering
modelAlgorithm Ranking

model Personalized
content

Rec. quality

Number
 of items

Model size

Map multi-stage rec. across
heterogeneous, commodity HW (Section 5)

Model size

Number
of stages

Tail-latency System-throughput

Design specialized HW to
exploit parallelism (Section 6-7)

Hardware

Application

Hyperparam.
sweep

(Section 3)
Model FLOPs

(Model parallelism)

Nu
m

be
r o

f i
te

m
s

 (d
at

a-
pa

ra
lle

lis
m

)

Stage 1

Stage 3

Design
specialized

HW to exploit
parallelism
(RPAccel)

Section 6-7
Step 3

Stage 2

Algorithm/HW Co-design

Balance multi-stage params.
Section 5-A. Step 1

Number
 of items

...
Map stages

across
heterogeneous,
commodity HW
(CPUs, GPUs)

Section 5-B
Step 2

RecPipe design flow End-to-end RecPipe system diagram

Figure 4: The structure of a multi-stage recommendation pipeline. Highlighted in red, RecPipe explores a variety of
recommendation model and hardware infrastructure parameters to balance quality, latency, and throughput.

RecPipeAccel

Input
items

Output
rec.

Baseline recommendation
accelerator

Monolithic
Model

Input
items

Output
rec.

Static
embedding $

Monolithic
systolic array

Filter

Host
CPU PCIe

D
R
A
M

Static
embedding $

Reconfig systolic array
Top-k filtering

Host
CPU PCIe

Dynamic
embedding $

Workload

Hardware

RPAccel design feature Performance implication Novelty

Reconfig systolic array
On-chip top-k filtering

Multi-stage embedding $
Pipelined stages

Concurrently process queries
 Eliminate CPU-accel transfers

Prefetch backend embeddings
Hide backend latency w/frontend

Adapted [13] for multi-stage rec.
New item filtering hardware

Optimized for multi-stage rec.
New pipelining for multi-stage

Frontend

Backend

D
R
A
M

MLP Embed.Sort
Data

Comm.
Single stage

(baseline)

2.5x latency speedup

1.5x latency speedup

2x throughput
improvement

+O.1
Multi-stage

+O.2
Filtering
accel.
+O.3

hybrid accel.
design

+ O.4, O.5
embedding

caching
& pipeline

multi-stage

1.3x latency
speedup

Input
items

Output
rec.Frontend Backend

Software optimizations Software opt. + Hardware specialization

Static
embedding $

Monolithic
systolic array

Host
CPU PCIe

D
R
A
M

1
2

3
4Backend

Frontend

O.2
O.3
O.4
O.5

RecPipe multi-stage models Algorithmic simplification HW-aware model decompositionO.1

O.1 O.5

O.4

O.2 & O.3

So
ftw

ar
e

Ha
rd

w
ar

e

Overall: 5x latency & 10x throughput

Figure 5: Comparison of baseline recommendation hardware accelerator and RPAccel. We describe RPAccel’s five
main innovations (i.e., O.1 to O.5) on the left and their performance benefits in the ablation study on the right.

each recommendation stage onto the underlying hardware. In
fact, we find the optimal mapping of multi-stage recommen-
dation varies across application-level targets (e.g., tail-latency,
system load). Thus, RecPipe schedules multi-stage pipelines
onto available hardware, based on algorithmic model pa-
rameters, architectural characteristics, and application-level
requirements, to maximize quality and performance.

While achieving the maximal quality target and at iso-
throughput, the scheduling optimizations reduce tail-latency
by 4× on CPUs and 3× on heterogeneous hardware i.e.,
CPUs and GPUs (see Section 5 for details). However, despite
these performance improvements there remains significant
room for further optimization. In particular, the commodity
CPU-GPU platforms suffer from two main drawbacks. First,
GPUs exhibit low utilization when exploiting data-level par-
allelism in the frontend and model-level parallelism in the
backend, primarily due to the high overhead of embedding
lookups and memory transformation operations on GPUs [16].
Second, between stages, high PCIe communication overheads
across the CPU and GPU limit achievable throughput. To
address these limitations, and given the importance of data
center-scale recommendation, RecPipe enables designing
specialized hardware for multi-stage recommendation.

3.2 Custom hardware to accelerate multi-stage
recommendation

Figure 5 illustrates the high-level architecture of the pro-
posed recommendation accelerator, RPAccel. On the left,
we start with a state-of-the-art accelerator baseline that mini-
mizes inference latency for a single-stage recommendation

model using a TPU-like monolithic systolic array and static
cache for hot-embeddings [26]. The aforementioned software
optimizations reduce workload complexity by decomposing
the single-stage model into a multi-stage pipeline. Given the
simplified workload, RPAccel is designed to concurrently pro-
cess multiple models and queries, end-to-end. Figure 5(right)
provides an ablation study for the proposed software and
hardware optimizations, demonstrating significant latency
and throughput improvement potential (i.e., O.1 to O.5).

By exploiting unique properties of multi-stage recommen-
dation, RPAccel is designed to balance both inference latency
and throughput based on application-level requirements.

• (O.1) RecPipe decomposes a single-stage model into mul-
tiple stages (2.5× latency reduction).

• (O.2) RPAccel comprises a top-k filtering unit to iden-
tify the k highest quality items based on predicted click-
through-rate (CTR) to be ranked by subsequent stages;
this eliminates host-accelerator communication between
recommendation stages (1.5× latency reduction).

• (O.3) RPAccel implements a reconfigurable systolic array
to concurrently process multiple stages and queries (2×
hardware utilization and throughput). RecPipe’s software
scheduler (see above) splits the monolithic systolic array
into multiple sub-arrays based on application-level targets
(quality, latency, throughput) and multi-stage models.

• (O.4) RPAccel balances on-chip memory resources to stat-
ically cache hot-embeddings and dynamically prefetch em-
beddings for backend models (40% reduction in average
memory access time). The static cache is provisioned
for both frontend and backend stages; the dynamic cache

4

Per-query RPAccel performance
model

Rec. datasets

PCIe measured
overhead

Rec.
dataset
Trained

 rec. models
Embedding

memory model
Reconfig. Systolic

Array (RTL)
Top-k filtering

unit (RTL)
Hardware
resources

Quality

Tail-latency

Throughput

Trained rec. models

Commodity hardware (Cascade Lake CPU, T4 GPU)

Quality

Tail-latency

Throughput

RPInfra

RPInfra

Figure 6: Evaluation methodology of RecPipe on com-
modity (top) and specialized (bottom) hardware.

Machines Cascade Lake CPU NVIDIA T4 GPU
Frequency 2.8 GHz 585 MHz

Cores 64 2560
SIMD AVX-512 FP32x64

Cache Sizes 1-16-22 MB 96-512 KB
DRAM Capacity 384 GB 15 GB
DDR Bandwidth 75 GB/s 300 GB/s

TDP 300 Watt 70 Watt

Table 2: Commodity hardware in experimental setup.

prefetches embeddings for the backend as the frontend
finishes sub-batches of the input query.

• (O.5) RPAccel breaks queries into sub-batches to pipeline –
and thus – overlap computation from frontend and backend
stages (1.3× latency reduction).

While achieving the highest quality target, compared to the
baseline recommendation accelerator, RPAccel’s optimiza-
tions collectively decrease tail-latency by up to 5× and in-
crease throughput by up to 10× (see Section 6-7 for details).

4. Experimental Methodology
Figure 6 illustrates the evaluation methodology we use

to study the system design implications of multi-stage rec-
ommendation. RecPipe encompasses a vast design space
across multi-stage modeling parameters, hardware solutions,
and application-level targets. To foster deeper understanding,
we analyze cross-sections of the design space based on the
application-level targets: iso-quality, iso-throughput, and iso-
latency. This section details the methodology on both real,
commodity hardware and simulated, specialized hardware.

Datasets and models. We evaluate RecPipe with three
open-source datasets: Criteo Kaggle [31], MovieLens 1M [20],
and MovieLens 20M [20]. We train neural matrix factoriza-
tion models for both MovieLens datasets [22]. To provide
intuition across the large design space studied in this work, we
conduct a deep dive using Criteo and Facebook’s DLRM [41].
On top of this deep dive, Section 8 summarizes results across
all datasets. All models are implemented in PyTorch.

Application-level targets. This work optimizes recom-
mendation based on three application-level targets:

• Quality: We use NDCG [5, 28] to quantify recommenda-
tion quality of the top sixty-four items served. For com-
mensurate analysis, final results are presented based on
the highest quality achieved for each model and dataset:
NDCG of 92.25 for Criteo (see Section 2).

• Tail-latency: To maintain user-experience, recommenda-
tions must meet SLAs and be served under strict tail-
latency targets [16], measured as 99th percentile (p99).

Parameter RPAccel configuration
Frequency 250 MHz

Systolic Array SRAM capacity 8MB
Systolic Array MAC units 128×128 MACs
Embedding cache capacity 16MB

DRAM capacity 16 GB
DRAM bandwidth 64 GB/s

DRAM latency 100 cycles

Table 3: Fixed resources in RPAccel.

• Throughput: Data-center recommendation systems must
maximize throughput, measured as the queries processed
per second (QPS). Queries follow a Poisson arrival rate.

Commodity hardware systems. To study the proposed
designs in the context of data center scale recommendation,
RecPipe runs datasets and models directly on real CPUs
(server class Intel Cascade Lake) and GPUs (NVIDIA T4).
Refer to Table 2 for detailed hardware specifications. Experi-
ments on CPUs use multiple processes to exploit parallelism
across cores—each core has a single PyTorch/MKL thread.
GPUs use CUDA/cuDNN 10.1.

Accelerator modeling. RecPipe uses a two-step evalua-
tion methodology to simulate specialized hardware.

First, we evaluate the latency of each query across each
stage of the multi-stage pipeline. The latency per stage is
computed as cumulative time from data transfers over PCIe,
embedding lookups, MLP operations, and the top-k filtering
units. Host-to-accelerator PCIe overheads are based on real
measurements from the CPU-GPU system (see Table 2). For
embedding lookups, we compute hit rates based on the cache
locality of open-source datasets. Given the cache hit rates, we
compute the memory latency of embedding operations using
simple latency and bandwidth models for SRAM and DRAM.
For MLP layers, We design and implement the systolic array
and the top-k filtering unit in RTL to gather cycle-accurate
performance measurements, including overheads from load-
ing weights and activations from DRAM. Combining latency
for all stages forms per-query performance model.

Second, the per-query latencies are fed into RecPipe which
simulates the at-scale performance characteristics of RPAccel,
measuring tail-latency, system-throughput, and quality, of
processing tens of thousands of queries.

For area and power evaluations, we separately synthesize
the reconfigurable systolic array, top-k filtering unit, and
memories in a 12nm FinFET technology. As shown in Table 3,
RPAccel implements comparable compute and memory re-
sources to a data center TPU accelerator (40 Watt TDP) [30].

5. Evaluation of RecPipe Inference Scheduler
on Commodity Hardware

In this section we use RecPipe to efficiently schedule multi-
stage recommendation onto heterogeneous hardware avail-
able in data centers. First, RecPipe balances the multi-stage
modeling parameters—number of stages, models per stage,
items to rank per stage—to co-optimize tail-latency, through-
put, and quality. Next, RecPipe co-designs the multi-stage
parameters for heterogeneous systems comprising CPUs and
GPUs. We show the optimal configuration of multi-stage
parameters depends on the underlying hardware. Further-
more, we show that while GPUs enable higher throughput and

5

Three stage

One
stage

Iso-throughput (inference QPS of 500)

RMsmall

RMmed
RMlarge

Iso-throughput (inference QPS of 500)

One-stage
(RMlarge)

Iso-quality (NDCG 92.25)

Two stage

Three stage

One stage

Two stage
(RMsmall-RMlarge)

Increasing
items to rankIncreasing

items to rank

Figure 7: (Left) In single-stage recommendation, larger models achieve the higher quality at the expense of tail-
latency. (Middle) Tuning multi-stage parameters improves quality under strict performance constraints. (Right) While
achieving the highest-quality target, decomposing single-stage recommendation to multiple stages reduces tail-latency.

quality at low-latency targets, CPU-only execution achieves
higher throughput under more relaxed latency targets.

5.1 Mapping multi-stage pipelines to CPUs
Figure 7(left) illustrates the tradeoff between tail-latency

and quality for single-stage recommendation on CPUs. Fol-
lowing intuition, larger more complex models (e.g., RMlarge)
achieve higher quality at the expense of higher tail-latency.

Takeaway 1: Carefully balancing multi-stage parameters
unlocks higher recommendation quality and throughput at
strict tail-latency targets.

At a fixed system load (i.e., QPS of 500), Figure 7(center)
shows tradeoff between tail-latency and quality for one-, two-,
and three-stage designs. Exhaustively sweeping all possible
combinations of models per stage and number of items to
rank per stage, we show the Pareto-frontier results.

Compared to single-stage designs, Figure 7(center) shows
multi-stage designs achieve higher quality under strict per-
formance constraints. The single-stage design ranks all 4096
items with RMlarge. The optimal two-stage design first pro-
cesses 4096 items with RMsmall followed by the top 256
items with RMlarge, reducing tail-latency by 4× given the
lower compute and memory demands.

The importance of optimizing for quality, not accuracy,
can be seen by diving deeper into the two-stage design. To
achieve high quality, the backend implements the most accu-
rate network (i.e., RMlarge); the frontend implements either
RMmed or RMsmall. While RMmed has higher accuracy, the
benefits are overshadowed by the additional compute and
memory requirements (see Table 1). In fact, with RMlarge in
the backend, both frontend options achieve the same qual-
ity (NDCG 92.25). But, the combination of RMmed-RMlarge
has a 1.6× longer tail-latency compared to RMsmall-RMlarge.
Designers must jointly optimize for quality and performance.

In addition to quality, balancing multi-stage parameters im-
proves throughput at strict tail-latency targets. Figure 7(right)
shows the tradeoff between tail-latency and throughput, at
the highest quality target (NDCG of 92.25). Compared with
the one-stage system, the two-stage pipeline reduces tail-
latency by 4.4× (QPS of 500). However, decomposing the
pipeline into three stages decreases performance given addi-
tional queuing delays between stages, which overshadow the
30% reduction in compute between two- and three-stage de-
signs. Note, the tradeoffs will vary across datasets—varying
model complexities and items to rank per stage will impact
the optimal configuration (see Section 8 for examples).

5.2 Mapping multi-stage pipelines to hetero-
geneous systems

Figure 8(top) illustrates the tradeoff between through-
put and tail-latency while achieving the high quality target
(NDCG of 92.25). Using RecPipe, we exhaustively evalu-
ate all mappings between multi-stage recommendation and
heterogeneous hardware and show the best configurations:
one-stage GPU-only, two-stage GPU-CPU, and the two-stage
CPU-only configurations in Figure 8(top). For the two-stage
GPU-CPU design, RecPipe maps either the frontend or the
backend to the GPU, running the other on the CPU. In partic-
ular, we show results for frontend running on the GPU and
backend on the CPU as our empirical evaluations show it
provides higher performance. We also evaluate mapping two
stages to the GPU with multi-tenant execution. Our evalua-
tions show this configuration is unable to extract the fine-grain
parallelism from multi-stage’s data dependency, incur longer
latency than the one-stage GPU-only configuration.

Takeaway 2: Given architectural differences, the optimal
multi-stage parameters vary on CPUs versus GPUs.

Recall from our previous analysis, for CPU-only execution
the two-stage design achieves the highest performance; on the
heterogeneous system, however, the single-stage GPU-only
configuration (solid black) achieves higher performance than
multi-stage using both CPU and GPU (solid red). The reason
is twofold. First, we observe comparable latency for RMsmall
versus RMlarge on the GPU, overshadowing the benefits of
decomposing models into finer-grained pipelines. Second,
the multi-stage GPU-CPU design requires transferring more
intermediate results across PCIe, incurring heavy queuing
delays and limiting system performance.

Nonetheless, the multi-stage GPU-CPU design plays an
important role. Recent work shows production-scale recom-
mendation model sizes are growing rapidly—by an order of
magnitude in just three years [39]. For production-scale mod-
els that are larger than the DRAM capacity available on GPUs
(e.g., ∼ 15GB on NVIDIA T4), designers will need to decom-
pose models into multiple stages. Here, frontend stages run
on the GPU in order to circumvent storage capacity limits and
exploit data-parallelism with the larger input working set size;
the backend models run on the CPU. Figure 8(top) shows that
this multi-stage GPU-CPU design achieves up to 3× lower
latency than the multi-stage CPU-only configuration.

Takeaway 3: By maximizing throughput at low latency,
GPUs unlock higher recommendation quality.

Despite the GPUs achieving 3× lower latency than the

6

CPU (2-stage)

GPU-CPU
(2-stage)

GPU
(1-stage)

Iso-quality (NDCG of 92.25)

Iso-throughput (inference QPS = 70)

CPU
2-stage

25
m

s
SL

A

2048

3200

4096

GPU enables high
quality at low latency

GPU
1-stage

Ite
m

s
ra

nk
ed

Figure 8: (Top) At iso-quality, mapping frontend (i.e.,
data-parallel) stages to GPUs reduces tail-latency by
up to 3×; CPU-only execution achieves higher system
throughput. (Bottom) At a lower system throughput (i.e.,
QPS of 70), the lower latency on GPUs can be traded off
for higher quality compared to CPU-based execution.

CPU-only designs (see Figure 8(top)), the GPUs remain un-
derutilized with an occupancy of 25%, and memory and
power utilization of 10% and 45%, respectively. Improv-
ing utilization requires higher batching. Unfortunately, as
we increase batching and system throughput (x-axis), the
GPU-enabled designs suffer from a sudden degradation in
tail-latency due to high queuing delays; in comparison, the
CPUs sustain higher throughput by concurrently processing
queries across cores (e.g., task-parallelism).

While the latency reduction from GPU’s does not trans-
late to higher throughput, it can enable higher quality. Fig-
ure 8(bottom) illustrates the tradeoff between tail-latency
and quality for CPU- and GPU-based recommendation at
iso-throughput. Following our previous results, we show the
optimal configurations: single-stage GPU-only and two-stage
CPU-only designs. Given the fixed models, RecPipe trade-
offs off latency for quality by increasing the number of items
ranked per query. At a strict SLA target of 25ms, the CPU
achieves an NDCG of 87, while the GPU achieves an NDCG
of 92.25. The increase in quality is a direct result of GPU’s
data-parallel architecture allowing it to rank 4096 items com-
pared to the CPU ranking only 3200 items at the 25 ms SLA.
Thus, AI accelerators for recommendation must be evaluated
not only for performance benefits but also on quality achieved
under strict performance and resource constraints.

Limitations of commodity hardware. Based on the per-
formance analysis above, we identify multiple limitations of
commodity platforms running multi-stage recommendation.
In particular, GPUs do not directly benefit from decompos-
ing models into multiple stages. This is due to the limits of
multi-tenant execution, under utilized hardware when sepa-
rately exploiting data- and model- level parallelism across
stages, and high PCIe data communication between stages.
Given these limitations and the growing scale of personalized
recommendation across Internet services [39, 59, 60], we use
RecPipe to unlock the opportunities from multi-stage ranking

by designing specialized hardware to provide high quality
and infrastructure efficiency, in the following section.

6. Analysis of RecPipeAccel’s Design Space
This section proposes RPAccel, a specialized accelerator

tailored to multi-stage recommendation models. We start
with a baseline TPU-like recommendation accelerator [26].
The baseline optimizes for low-latency single-stage inference,
but suffers from low utilization and system throughput on
multi-stage pipelines. To accelerate multi-stage recommenda-
tion, as summarized in Section 3.2, RPAccel comprises four
main features that exploit distinct opportunities enabled by
RecPipe: the pipeline execution, a reconfigurable MLP unit,
a top-k filtering unit, and the partitioned embedding cache for
hot-vectors across models and prefetched backend vectors.

6.1 Mapping multi-stage pipelines to RPAccel
Figure 9(left) illustrates the high-level architecture of RPAc-

cel. Unlike prior art which accelerates single-stage model in-
ferences alone, RPAccel is designed to process queries end-to-
end: model inferences for multiple stages and filtering top-k
user-item interactions between stages. Figure 9(center) shows
how multi-stage recommendation is mapped onto RPAccel.
Networks across the stages share accelerator memory and
compute resources. For each stage, to produce predicted CTR
scores for each user-item pair, RPAccel comprises an MLP
and embedding gather unit. RPAccel implements a set of
top-k filtering units to identify high-quality user-item pairs.

Takeaway 4: Breaking queries into multiple sub-batches
enables pipelined execution of frontend and backend stages.

Figure 9(right) shows the temporal mapping of multi-stage
recommendation onto RPAccel. To reduce latency, RPAc-
cel pipelines frontend and backend stages by breaking queries
into smaller sub-batches. As an example, Figure 9(right)
shows RPAccel splitting a single query of 4K items into four
smaller batches of 1K each, overlapping frontend and back-
end stages. The degree of sub-batching must be carefully
balanced in order to maintain high utilization and quality.
Smaller batch-sizes incur higher inference overheads (e.g.,
weight loading) but can better overlap frontend and backend
stages. Furthermore, splitting queries into n smaller batches
can degrade quality as the top-k items in each stage are set by
stitching the top- k

n items in each batch. Using RecPipe, we
ensure the system maintains high-quality and splits queries
into four sub-batches for workloads studied in this paper.

6.2 Customization of RPAccel micro-architecture
Below we detail RPAccel’s micro-architectural design space.
Takeaway 5: Splitting monolithic systolic arrays into sub-

arrays improves recommendation inference throughput by
concurrently processing multiple models and queries.

As recommendation comprises large input working set
sizes, RPAccel implements a weight stationary, systolic array-
based MLP engine [6, 30, 44]. To concurrently process multi-
ple stages and queries, RPAccel dynamically splits a mono-
lithic array into independent sub-arrays [13]. Figure 10(a)
illustrates the benefit of a reconfigurable systolic array for
multi-stage recommendation. We show the MAC utilization
for various array sizes and models. Larger arrays achieve
lower latency but suffer from lower utilization when process-

7

Temporal mapping multi-stage rec. to RPAccel

4K items +
RMsmall

512 items +
RMlarge

Emb
PCIe MLPBot

MLPtop
Sort

4x1K items +
RMsmall

4x128 items + RMlarge

Latency
reduction

Host
CPU

RecPipe Accelerator

PCIe
DR

AM

Input
items

TopN
items

Dense-inputs
SRAM

Fraction
per stage

Multi-Stage
hot

embedding
cache

Embedding
gather unit

Look-
ahead
vectors

Memory
capacity

Reconfig MLP + top-k unit

Filtered
Candidates

Weights
SRAM

Spatial mapping multi-stage rec. to RPAccel
Frontend

model
Backend

modelFilter

128

12
8

Input
items

Output
rec.

32

32

64

64

Frontend
 query

Backend
 query

Reconfig MLP + top-k unit

Embedding caches
Embedding
gather unit

Look-ahead
vectors

Static
embeddings

Pipelined
frontend &
backend

Figure 9: (Left) Overall design of the RecPipe accelerator (RPAccel) comprising an embedding gather unit with two on-
chip caches for static and dynamic vectors, and a reconfigurable MLP and top-k filtering unit. (Middle) Static mapping
of multi-stage recommendation onto RPAccel. Frontend and backend share both memory and compute resources.
(Right) Temporal mapping of multi-stage recommendation onto RPAccel with pipelined frontend and backend models.

Look-ahead
vectors

Static
embedding

cache

Embedding gather unit

Dense
inputs

Filtered
candidates DRAM

Miss

Dense input
SRAM

Emb.
Hit

(a) Reconfigurable MLP

Streaming
CTR score

Buffer stored
in weights

mem.

Ids

Top-k Flag
e.g., k = 512

e.g., bin 1+2

(c) Multi-stage embedding partitioning

0.9, 1
0.8, 0.9

0, 0.1
…

N-Bins Count
256
384

8K
top-512 ids

Load aware HW mapping per. stage

> CTR thresh (0.5)

U
til

iza
tio

n
(%

)
C

yc
le

s

RMsmall RMmed RMlarge

8x
8

16
x1

6
32

x3
2

12
8x

12
8

64
x6

4

8x
8

16
x1

6
32

x3
2

12
8x

12
8

64
x6

4

8x
8

16
x1

6
32

x3
2

12
8x

12
8

64
x6

4

Systolic array size (MACs)

Lower
util.

Higher
perf.

Baseline

Reconfig SA

Fraction of cache devoted to frontend

AM
AT

 (c
yc

le
s)

4MB, 1/8 filtering ratio
12MB, 1/8 filtering ratio
12MB, 1/16 filtering ratio

Larger
$ size

(b) Top-k filtering unit

Larger filtering
ratio between

stages

Figure 10: Design space exploration of RPAccel. (a) Larger systolic arrays suffer from low utilization on smaller
models, motivating provisioning resources into sub-arrays for concurrent query processing. Compared to a monolithic
array with 30% utilization, the reconfigurable array has a 60% utilization. (b) Top-k filtering unit designed to mini-
mize area and power while eliminating host-accelerator PCIe communication overheads. (c) On-chip embedding cache
resources must be asymmetrically provisioned across frontend and backend to minimize average memory access time.

ing small models (i.e., RMsmall). In fact, when processing
a two-stage pipeline, the fixed, monolithic array has an av-
erage utilization of only 30%, as it is overprovisioned for
the frontend (i.e., RMsmall ranking 4K items). Splitting the
monolithic array into smaller units improves utilization to
60%, doubling throughput at comparable latency.

Note, RPAccel’s reconfigurable systolic array is inspired
by prior work which proposes a fission architecture to split
monolithic arrays into sub-arrays for multi-tenancy [13]. Cus-
tomized for multi-stage recommendation, RPAccel eliminates
complex, omni-directional interconnects, incurring a lower
area and power penalty (i.e., 13% area and 21% power in [13]
versus 6% and 11% in RPAccel)1, and extends the reconfig-
urability in response to application QPS and SLA targets.

Takeaway 6: Implementing top-k user-item filtering units
in specialized hardware eliminates PCIe overheads.

Based on the predicted CTR, top scoring user-item inter-
actions must be filtered and forwarded to subsequent rec-
ommendation stages. Prior recommendation accelerators
only process MLP inference [26, 29]. Thus, the filtering
step is offloaded to host-processors incurring high PCIe over-
heads [26]. To eliminate communication overheads, RPAc-
cel implements a set of on-chip top-k filtering units (see
Figure 9 middle, blue). One approach to identify the top-

1Following the baseline [13], we exclude on-chip SRAM when
comparing area and power. Figure 11 includes SRAM overheads.

k user-item pairs is to sort all CTR scores. Unfortunately,
sorting latency scales with the number of items to rank, poten-
tially consuming tens-thousands of cycles for recommenda-
tion given large input sizes. Furthermore, existing hardware
sorting units consume significant area and power [38].

Instead, RPAccel exploits two unique properties of rec-
ommendation inference to simplify the filtering unit. First,
between stages, the final top-k user-item pairs need not be
ordered—RPAccel implements an approximate, bucketing
design. Second, the final MLP layer produces one CTR score
per cycle leading to a streaming filtering unit design.

Figure 10(b) shows the resulting top-k filtering unit. The
filtering unit maintains N bins (e.g., N=16). Each bin repre-
sents user-item pairs of a specific CTR score range between
0 and 1. As a new CTR score arrives every cycle, the filter-
ing unit adds the user-item id to the corresponding bin and
increments its counter. For example, Figure 10(b) shows the
top bin counts user-item pairs with CTR scores between 0.9
and 1 (high quality). Based on the CTR score, the user-item
pair id is stored in a dedicated portion of the systolic array
banked weight SRAM. Storing all (4K) user-item id pairs
consumes 12% of the weight SRAM. To reduce this over-
head, RPAccel skips user-item pairs with low CTRs. Using
RecPipe, we set a minimum CTR threshold of 0.5, reducing
the overhead on weight memory to 3%. Once all user-item
CTRs are categorized, the filtering unit identifies and copies

8

MLP Weight
SRAM

Systolic
Array

Top-k filtering unit &
Reconfig. systolic array

(<+1%)

Banked act.
memory (+10%)

Baseline
TPU-like

accelerator

RPAccel overhead
(+11%)

Embedding
SRAM

Baseline act. memory
Area breakdown Power breakdown

Baseline TPU-
like accelerator

RPAccel
 overhead (+36%)

MLP Weight
SRAM

Baseline
act. memory Systolic

Array

Banked
act. memory

(+32%)

Top-k filtering unit (+2%)

Embedding
SRAM

Reconfig. array (+2%)

Figure 11: Compared to the baseline, RPAccel incurs
11% and 36% area (left) and power (right) overheads.

at least top-k user-item pairs indicated from the highest n
bins to DRAM. These ids uniquely reference continuous and
categorical inputs for subsequent stages.

Given the streaming design, the performance overhead of
the filtering step is set by the latency it takes to identify and
send user-item ids from the highest bins to main memory. We
find this takes a couple hundred accelerator cycles, negligible
compared to model inference. Although each sub-array in
RPAccel’s reconfigurable systolic array requires a separate
top-k filtering unit, the area and power overheads are small
(see Figure 11) and there is no degradation in quality.

Takeaway 7: Asymmetrically-provisioned embedding caches
tailored for each of the multi-stage models minimizes memory
access latency.

Recent work shows embedding table operations suffer from
irregular memory access patterns, low compute intensity, and
high storage capacities [18]. Consequently, the performance
of embedding table operations is bounded by embedding
vector fetch latency. Prior work exploits the power-law distri-
bution of embedding lookups to cache frequently accessed
vectors on-chip [2, 26, 33]. The embedding caches in prior
work however assume a single stage recommendation model.

Instead, RPAccel implements an embedding cache cus-
tomized for multi-stage recommendation by comprising (1) a
static embedding cache that is provisioned statically for hot
embedding vectors from both frontend and backend stages,
(2) a look-ahead embedding cache that stores embedding vec-
tors for in-flight queries. It also prefetches lookups for later
stages in RPAccel’s pipeline optimization (Figure 9(right)).
As shown in Figure 9(left), input embedding IDs arrive either
from the host processor for frontend models or the output of
top-k filtering units for backend models. Based on the IDs,
the embedding gather unit first checks if the corresponding
vectors are in the caches. If yes, the embedding vectors are
returned to the “Dense-input SRAM” to be processed by the
MLP-top layers. If not, the embedding gather unit retrieves
the vectors from DRAM to the look-ahead embedding cache.

Embedding cache provisioning. Following data center
AI accelerators with 24MB capacity [30], we start with 16MB
for embedding caches (8MB in MLP weights/activations).
The size of the look-ahead cache is bounded by the number
of items ranked in backend stages, size of embedding vectors,
and maximum number of queries in flight. For the worst
case we conservatively provision 4MB for the look-ahead
cache. This leaves 12MB for the static embedding cache.
Figure 10(c) shows the impact of asymmetrically provision-
ing memory for frontend and backend models on the average
memory access time (AMAT) for embeddings. With a 128
byte cache line size, the embedding vector size of RMlarge,

Iso-quality (NDCG of 92.25)
Iso-resource

One stage
RPAccel Three stage RPAccel

Two stage RPAccel

Baseline rec.
accelerator

Two stage
asymmetric RPAccel
resource provisioning

RPAccel8,2

RPAccel8,8

RPAccel8,16

Figure 12: (Top) At iso-quality and hardware resources,
co-designing multi-stage models with hardware enables
lower tail-latency and higher system throughput. (Bot-
tom) Asymmetrically provisioning RPAccel resources
across stages further improves performance.

we find the fraction of storage devoted to the frontend versus
backend depends on the item filtering ratio between stages.
Given a filtering ratio of one-eighth for Criteo, we provision
equal memory capacity for the frontend and backend.

Area and power breakdown. Figure 11 illustrates the
area and power overheads of the proposed optimizations com-
pared to the baseline, TPU-like recommendation accelera-
tor [26]. The combination of the reconfigurable MLP unit,
top-k filtering unit, and multi-stage aware embedding cache
incurs a total of 11% area and 36% power overhead, moderate
compared to RPAccel’s performance benefits (see Section 7).

7. Evaluation of RPAccel At-Scale
In this section we evaluate the performance of RPAccel

at-scale. Instrumenting RecPipe with the simulated RPAccel
we study the proposed hardware solutions in terms of quality,
tail-latency, and system-throughput. We study RPAccel using
publicly available models and datasets; and also project the
quality and performance trends for future recommendations.

7.1 RPAccel evaluation on open-source use cases
Takeaway 8: By accelerating multi-stage recommenda-

tion, RPAccel achieves 3× lower latency and 6× higher
throughput compared to baseline, single-stage designs.

Given fixed hardware resources, Figure 12(top) illustrates
the tradeoff between throughput and latency as we vary the
RPAccel-provisioning decisions for all stages. The baseline
follows Centaur [26]—a single-stage recommendation ac-
celerator which implements a TPU-like systolic array [30]
and uses the host-processor to filter top-k interactions. The
baseline achieves a 6ms and 21ms tail-latency at the infer-
ence throughput of 200 and 400 QPS, respectively. While
achieving the same quality, the single-stage RPAccel design
achieves a 4.5ms and 9ms tail-latency at 200 and 400 QPS, re-

9

Single-stage RPAccel

Memory (embedding table size)
Compute (items to rank)

1
1

2
1.5

4 8 32
2 2.5 3

Normalized recommendation workload (compute & memory)

Multi-stage RPAccel

Iso-throughput (QPS of 500)

Multi-stage offers
better RecSys scaling

Improving recommendation quality by scaling
frontend items and backend model size

% SSD access hidden
decreases w/
 larger models

Larger backend
models incur higher

DRAM miss rate

Fr
ac

tio
n

of
 S

SD
 a

cc
es

s
 ti

m
e

ov
er

la
pp

ed

DR
AM

 M
is

s
Ra

te
 (%

)

Figure 13: (Top) Projecting the performance impact of
scaling recommendation models to higher capacities re-
quiring SSD storage. (Bottom) Compared to the single-
stage accelerator baseline, RPAccel provides graceful
performance trends with future model sizes by also scal-
ing items to rank to overlap frontend and backend stages.

spectively. Furthermore, decomposing recommendation into
finer-grained pipeline enables a minimum latency of 2.1ms
at 200 QPS or, at 6ms a throughput of 1300 QPS— 3× and
6× improvement over the single-stage baseline, respectively.
The latency reduction and throughput increase owe RPAccel’s
software and hardware optimizations.

Takeaway 9: Asymmetrically provisioning accelerator
based on multi-stage recommendation models resources un-
locks lower tail-latency and higher system-throughput.

Figure 12 (bottom) illustrates the benefit of asymmetrically
provisioning RPAccel resources across stages. For a two-
stage recommendation pipeline, the frontend is fixed with sub-
arrays while the backend implements two (i.e., RPAccel8,2),
eight (i.e., RPAccel8,8), and sixteen sub-arrays (i.e., RPAccel8,16).
All experiments assume iso-hardware resources while achiev-
ing the maximum quality target (i.e., NDCG of 92.25).

Compared with the homogeneous accelerator (i.e., RPAccel8,8),
aggregating the backend into fewer, larger arrays RPAccel8,2
reduces the latency at low throughput by 1.5×. Similarly,
at high system load, splitting the backend into multiple,
smaller units RPAccel8,16 reduces the latency by 1.4×. Given
application-level latency and system targets, asymmetrically
provisioning RPAccel resources across stages widens the de-
sign space of recommendation services. Building on prior
art, RPAccel resources are dynamically reconfigured to meet
varying targets, given workload demands [13, 35, 48].

7.2 RPAccel evaluation on future models
So far we have analyzed the performance of RPAccel on

open-source use-cases. However, recent literature shows

production-scale recommendation models are rapidly grow-
ing in size, outpacing DRAM capacity and even reaching
TBs in size [39]. One promising path to enabling future,
production-scale models is to use higher capacity memories
such as SSDs [11, 49]. Here we consider the performance
implications of SSDs on RPAccel.

Storing larger embedding tables in SSD lowers embedding
locality and degrades performance. Figure 13(top) shows
the impact of larger embedding tables on embedding local-
ity. While frequently accessed embedding vectors are stored
DRAM, a larger portion of these tables are stored in the
SSD (x-axis). For example, increasing the size of RMlarge
by 32× requires storing 97% of the embedding tables in
SSD. This also causes increases DRAM miss rates from 17%
to 28%. Recall, RPAccel pipelines frontend and backend
stages—allowing the accelerator to overlap long latency SSD
accesses in the backend. However, Figure 13(top) shows
with growing embedding table sizes, a smaller fraction of the
accesses can be overlapped causing an increase in latency.

Takeaway 10: Compared to baseline single-stage accel-
erators, RPAccel achieves higher quality and performance
when scaling both frontend and backend stages towards fu-
ture recommendation engines.

In addition to scaling embedding tables in backend mod-
els (e.g., model size), one can also increase the number of
items to rank in the frontend (e.g., compute demand). Fig-
ure 13(bottom) shows the impact of scaling both frontend and
backend stages (x-axis) on quality. Starting from the baseline
configuration, we project increasing model size by 32× and
compute complexity from ranking 4K items to 12K items
improves quality from an NDCG of 92.25 to 96.

Increasing the items to rank allows RPAccel to more effec-
tively overlap the frontend and backend stages. Figure 13(bot-
tom) shows the corresponding tail-latency impact on scaling
compute and memory complexity assuming iso-throughput
(QPS of 500). We show two configurations: single-stage
(black) and multi-stage (red) RPAccel. By overlapping fron-
tend and backend stages, the multi-stage design achieves
higher performance for larger recommendation engines com-
pared to the single-stage design. More generally, we show
the importance of tightly-coupling algorithm and hardware
scaling for future recommendation engines; RecPipe and
RPAccel open such new co-design opportunities.

8. Summary of RecPipe Results
Figure 14 summarizes the performance benefits of the pro-

posed solutions, co-designing models and hardware for multi-
stage recommendation. The results show the tail-latency
across three datasets (i.e., Criteo Kaggle, MovieLens 1M and
20M [20, 31]), system loads (i.e., QPS of 100, 500, 2000),
and hardware platforms (i.e., CPU, GPU, Accel). The col-
ored bars distinguish between one- (black), two- (red), and
three- (blue) stage recommendation pipelines. Following
our previous analysis, CPU designs assume CPU-only exe-
cution (Section 5.1). For GPU-based configurations, 1-stage
designs represent GPU-only execution; 2-stage and 3-stage
designs represent heterogeneous GPU-CPU execution (Sec-
tion 5.2). Accel configurations assumes RPAccel-only exe-
cution (Section 6-7). Across the system loads and datasets,
RecPipe reduces tail-latency by an average of 3.2× on com-

10

System throughput (QPS)

1 stage
2 stage
3 stage

1 stage
2 stage
3 stage

Iso-quality Criteo Kaggle

100 QPS 500 QPS 2000 QPS
CPU GPU Accel CPU GPU Accel CPU GPU Accel

MovieLens 1M

100 QPS 500 QPS 2000 QPS
CPU GPU Accel CPU GPU Accel CPU GPU Accel

MovieLens 20M

100 QPS 500 QPS 2000 QPS
CPU GPU Accel CPU GPU Accel CPU GPU Accel

Figure 14: Summary of RecPipe results at iso-quality for the Criteo, and MovieLens 1M and 20M datasets. For each
dataset, we show the tail-latency (log scale) for three system loads and hardware platforms. Configurations are greyed
out when system load is not met. The optimal multi-stage design varies across loads, hardware platforms, and datasets.

modity hardware; compared to prior recommendation accel-
erators, RPAccel reduces tail-latency by 4.3× on average.

Differences across system loads. Across different system
loads, the optimal multi-stage configuration and hardware
platform varies. For instance, with the Criteo dataset on GPU-
enabled hardware, between low (QPS of 100) and medium
(QPS of 500) loads, the optimal number of stages varies from
one to two. Similarly, for Criteo, the optimal hardware back-
end between low and medium loads changes from GPUs to
CPUs, respectively. Differences across system loads owe
to varying system optimization strategies for maximizing
throughput versus minimizing latency; for example, through-
put is maximized by processing multiple queries concurrently
while latency is minimized by accelerating individual queries.

Differences across datasets. In addition to varying sys-
tem loads, the optimal multi-stage configuration and hard-
ware platform varies across datasets. For example with com-
modity hardware, on the Criteo dataset, CPUs achieve lower
tail-latency than GPUs for system loads above 100 QPS; on
the other hand, GPU-based designs outperform CPU-only
execution for both MovieLens datasets. With RPAccel, tail-
latency is optimized with the deeper three-stage pipeline
for MovieLens-20M at 500 and 2000 QPS and all loads
for Criteo; on MovieLens-1M however two-stage is optimal.
Differences across datasets owe to the Criteo implementing
DLRM [41] with higher embedding capacities while Movie-
Lens implementing neural matrix factorization models domi-
nated by MLP layers; furthermore, across stages the number
of items to rank reduces by roughly 5×, 2.5×, and 4×, on
Criteo, MovieLens 1M, and MovieLens 20M, respectively.
These differences highlight the need to co-design multi-stage
recommendation parameters with the underlying hardware
early in the design process using frameworks like RecPipe.

Benefits of RPAccel. Compared with CPUs and GPUs,
RPAccel significantly reduces tail-latency of multi-stage rec-
ommendation across different datasets and system loads. In
fact, in many cases (e.g., Criteo and MovieLens20M datasets)
RPAccel is optimized with deeper pipelines compared to
commodity GPUs; This is a direct result of extracting data-
level and model-level parallelism opportunities across multi-
stage recommendation and eliminating high-overhead host-
accelerator communications that RPAccel enables.

9. Related Work
While systems and computer architecture researchers have

proposed various solutions to optimize cloud-scale personal-
ized recommendation models, relatively little work explores
co-design opportunities between models and hardware to
jointly optimize quality and performance, as well as the
unique characteristics of multi-stage recommendation.

DNN-based recommendation models. To improve con-
tent personalization, recommendation models are growing
rapidly in size and complexity [39, 58, 59, 60]. Tackling
the growing model sizes, researchers have proposed tech-
niques to compress embedding tables while preserving accu-
racy [12, 14, 46, 52]. Alternatively, one can decompose large
monolithic models into multi-stage pipelines. Industry publi-
cations show multi-stage designs are used for serving content
on Youtube [58] and Instagram [15, 27]. To balance recom-
mendation quality and model complexity, machine learning
researchers have explored a variety of modeling techniques
to train each stage of the multi-stage pipeline [32]. However,
in prior work, the multi-stage recommendation systems are
designed to maximize quality, independent on the underly-
ing hardware. RecPipe extends prior art by co-designing the
multi-stage models and underlying hardware—commodity
and specialized—in order to tightly co-optimize quality, tail-
latency, and throughput for data center scale deployment.

Specialized recommendation hardware. Lots of research
effort has been devoted to design specialized hardware for
deep learning—especially MLPs, CNNs, and RNNs [4, 6, 7,
8,17,19,30,42,43,44,47,54,55]. However, recommendation
systems pose distinct challenges owing to their network ar-
chitectures and use cases [18, 25, 41]. Given its importance,
hardware proposals for accelerating recommendation models
have begun to emerge [1,3,9,10,16,26,29,33,34,36,37,40,50].
While prior work focuses on improving hardware efficiency
given fixed workloads, RecPipe brings quality into the mix.
Accounting for both quality and performance, this work co-
designs multi-stage models and hardware. In addition to
RecPipe’s post-training inference scheduler on commodity
hardware, we compare the proposed RPAccel to a state-of-
the-art TPU-like baseline recommendation accelerator, Cen-
taur [26]; compared to the baseline, we demonstrate that by
co-designing models and hardware, RPAccel jointly improves
recommendation quality, tail-latency, and throughput.

10. Conclusion
Given the growing prevalence of personalized recommen-

dation, architects have invested significant resources improv-

11

ing recommendation inference efficiency. While proposed
solutions tackle different compute and memory bottlenecks,
they do not directly co-optimize quality and performance. In
this work we propose RecPipe, a system for co-designing
models and hardware to jointly optimize quality, tail-latency,
and throughput. First, RecPipe splits monolithic models into
multi-stage pipelines exposing unique system optimization
opportunities. Next, we design an inference scheduler that
maps multi-stage recommendation across CPUs and GPUs.
Finally, we deign a novel hardware accelerator for multi-stage
recommendation which achieves high-quality while improv-
ing latency and throughput by up to 3× and 6×, respectively,
over a baseline TPU-like recommendation accelerator.

REFERENCES
[1] B. Acun, M. Murphy, X. Wang, J. Nie, C.-J. Wu, and K. Hazelwood,

“Understanding training efficiency of deep learning recommendation
models at scale,” arXiv preprint arXiv:2011.05497, 2020.

[2] M. Adnan, Y. E. Maboud, D. Mahajan, and P. J. Nair,
“High-performance training by exploiting hot-embeddings in
recommendation systems,” arXiv preprint arXiv:2103.00686, 2021.

[3] B. Asgari, R. Hadidi, J. Cao, D. E. Shim, S.-K. Lim, and H. Kim,
“Fafnir: Accelerating sparse gathering by using efficient near-memory
intelligent reduction,” in 2021 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2021.

[4] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim et al., “A
cloud-scale acceleration architecture,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2016, pp. 1–13.

[5] W. Chen, T.-y. Liu, Y. Lan, Z.-m. Ma, and H. Li, “Ranking measures
and loss functions in learning to rank,” in Advances in Neural
Information Processing Systems, Y. Bengio, D. Schuurmans,
J. Lafferty, C. Williams, and A. Culotta, Eds., vol. 22. Curran
Associates, Inc., 2009, pp. 315–323. [Online]. Available:
https://proceedings.neurips.cc/paper/2009/file/
2f55707d4193dc27118a0f19a1985716-Paper.pdf

[6] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional
neural networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1,
pp. 127–138, 2017.

[7] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Teman, “Dadiannao: A machine-learning
supercomputer,” in MICRO, 2014.

[8] Y. Choi and M. Rhu, “Prema: A predictive multi-task scheduling
algorithm for preemptible neural processing units,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 220–233.

[9] M. Choy, “Accelerating the modern machine learning workhorse:
Recommendation inference,” 2020. [Online]. Available:
https://sambanova.ai/blog/accelerating-the-modern-ml-workhorse-
recommendation-inference

[10] N. Corp., “Neuchips recommendation accelerator recaccel,” 2020.
[Online]. Available: https://2ca8d951-4386-4e41-9cab-50c86da5f5a8.
filesusr.com/ugd/d79931_9382d53600f54d21a6eabe46d1f0ffa2.pdf

[11] A. Eisenman, M. Naumov, D. Gardner, M. Smelyanskiy, S. Pupyrev,
K. Hazelwood, A. Cidon, and S. Katti, “Bandana: Using non-volatile
memory for storing deep learning models,” 2018.

[12] B. Ghaemmaghami, Z. Deng, B. Cho, L. Orshansky, A. K. Singh,
M. Erez, and M. Orshansky, “Training with multi-layer embeddings
for model reduction,” 2020.

[13] S. Ghodrati, B. H. Ahn, J. Kyung Kim, S. Kinzer, B. R. Yatham,
N. Alla, H. Sharma, M. Alian, E. Ebrahimi, N. S. Kim, C. Young, and
H. Esmaeilzadeh, “Planaria: Dynamic architecture fission for spatial
multi-tenant acceleration of deep neural networks,” in 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2020, pp. 681–697.

[14] A. Ginart, M. Naumov, D. Mudigere, J. Yang, and J. Zou, “Mixed
dimension embeddings with application to memory-efficient

recommendation systems,” arXiv preprint arXiv:1909.11810, 2019.

[15] S. Goda, N. Agata, and Y. Matsumura, “A stacking ensemble model
for prediction of multi-type tweet engagements,” in Proceedings of the
Recommender Systems Challenge 2020, ser. RecSysChallenge ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
6–10. [Online]. Available: https://doi.org/10.1145/3415959.3415994

[16] U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G. Wei, H. S. Lee,
D. Brooks, and C. Wu, “Deeprecsys: A system for optimizing
end-to-end at-scale neural recommendation inference,” in 2020
ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020, pp. 982–995.

[17] U. Gupta, B. Reagen, L. Pentecost, M. Donato, T. Tambe, A. M. Rush,
G.-Y. Wei, and D. Brooks, “Masr: A modular accelerator for sparse
rnns,” in 2019 28th International Conference on Parallel Architectures
and Compilation Techniques (PACT). IEEE, 2019, pp. 1–14.

[18] U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks,
B. Cottel, K. Hazelwood, M. Hempstead, B. Jia et al., “The
architectural implications of facebook’s dnn-based personalized
recommendation,” in 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2020, pp.
488–501.

[19] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally, “EIE: Efficient inference engine on compressed deep neural
network,” in Proceedings of the ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2016, pp.
243–254.

[20] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context.” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, Dec. 2015.
[Online]. Available: http://dx.doi.org/10.1145/2827872.

[21] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril,
D. Dzhulgakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro et al., “Applied
machine learning at facebook: A datacenter infrastructure perspective,”
in 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2018, pp. 620–629.

[22] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
collaborative filtering,” in Proceedings of the 26th International
Conference on World Wide Web, ser. WWW ’17. Republic and
Canton of Geneva, Switzerland: International World Wide Web
Conferences Steering Committee, 2017, pp. 173–182. [Online].
Available: https://doi.org/10.1145/3038912.3052569

[23] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
collaborative filtering,” in Proceedings of the 26th international
conference on world wide web, 2017, pp. 173–182.

[24] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

[25] S. Hsia, U. Gupta, M. Wilkening, C. J. Wu, G. Y. Wei, and D. Brooks,
“Cross-stack workload characterization of deep recommendation
systems,” in 2020 IEEE International Symposium on Workload
Characterization (IISWC), 2020, pp. 157–168.

[26] R. Hwang, T. Kim, Y. Kwon, and M. Rhu, “Centaur: A chiplet-based,
hybrid sparse-dense accelerator for personalized recommendations,” in
Proceedings of the ACM/IEEE 47th Annual International Symposium
on Computer Architecture, ser. ISCA ’20. IEEE Press, 2020, p.
968–981. [Online]. Available:
https://doi.org/10.1109/ISCA45697.2020.00083

[27] T. G. Ivan Medvedev, Haotian Wu, “Powered by ai: Instagram’s
explore recommender system,” 2019. [Online]. Available:
https://ai.facebook.com/blog/powered-by-ai-instagrams-explore-
recommender-system/

[28] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation of ir
techniques,” ACM Transactions on Information Systems (TOIS),
vol. 20, no. 4, pp. 422–446, 2002.

[29] W. Jiang, Z. He, S. Zhang, T. B. Preußer, K. Zeng, L. Feng, J. Zhang,
T. Liu, Y. Li, J. Zhou et al., “Microrec: Efficient recommendation
inference by hardware and data structure solutions,” Proceedings of
Machine Learning and Systems, vol. 3, 2021.

[30] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of
the ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2017, pp. 1–12.

12

https://proceedings.neurips.cc/paper/2009/file/2f55707d4193dc27118a0f19a1985716-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/2f55707d4193dc27118a0f19a1985716-Paper.pdf
https://sambanova.ai/blog/accelerating-the-modern-ml-workhorse-recommendation-inference
https://sambanova.ai/blog/accelerating-the-modern-ml-workhorse-recommendation-inference
https://2ca8d951-4386-4e41-9cab-50c86da5f5a8.filesusr.com/ugd/d79931_9382d53600f54d21a6eabe46d1f0ffa2.pdf
https://2ca8d951-4386-4e41-9cab-50c86da5f5a8.filesusr.com/ugd/d79931_9382d53600f54d21a6eabe46d1f0ffa2.pdf
https://doi.org/10.1145/3415959.3415994
http://dx.doi.org/10.1145/2827872.
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1109/ISCA45697.2020.00083
https://ai.facebook.com/blog/powered-by-ai-instagrams-explore-recommender-system/
https://ai.facebook.com/blog/powered-by-ai-instagrams-explore-recommender-system/

[31] C. Kaggle, “Display advertising challenge: Predict click-through rates
on display ads,” 2014. [Online]. Available:
https://www.kaggle.com/c/criteo-display-ad-challenge

[32] W.-C. Kang and J. McAuley, “Candidate generation with binary codes
for large-scale top-n recommendation,” in Proceedings of the 28th
ACM International Conference on Information and Knowledge
Management, 2019, pp. 1523–1532.

[33] L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril,
A. Firoozshahian, K. Hazelwood, B. Jia, H.-H. S. Lee et al., “Recnmp:
Accelerating personalized recommendation with near-memory
processing,” in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2020, pp.
790–803.

[34] B. Kim, J. Park, E. Lee, M. Rhu, and J. H. Ahn, “Trim: Tensor
reduction in memory,” IEEE Computer Architecture Letters, vol. 20,
no. 1, pp. 5–8, 2021.

[35] H. Kwon, L. Lai, T. Krishna, and V. Chandra, “Herald: Optimizing
heterogeneous dnn accelerators for edge devices,” arXiv preprint
arXiv:1909.07437, 2019.

[36] Y. Kwon, Y. Lee, and M. Rhu, “Tensordimm: A practical near-memory
processing architecture for embeddings and tensor operations in deep
learning,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019, pp. 740–753.

[37] Y. Kwon, Y. Lee, and M. Rhu, “Tensor casting: Co-designing
algorithm-architecture for personalized recommendation training,”
2020.

[38] S. Lin, P. Chen, and Y. Lin, “Hardware design of low-power
high-throughput sorting unit,” IEEE Transactions on Computers,
vol. 66, no. 8, pp. 1383–1395, 2017.

[39] M. Lui, Y. Yetim, Ö. Özkan, Z. Zhao, S.-Y. Tsai, C.-J. Wu, and
M. Hempstead, “Understanding capacity-driven scale-out neural
recommendation inference,” arXiv preprint arXiv:2011.02084, 2020.

[40] M. Naumov, J. Kim, D. Mudigere, S. Sridharan, X. Wang, W. Zhao,
S. Yilmaz, C. Kim, H. Yuen, M. Ozdal et al., “Deep learning training
in facebook data centers: Design of scale-up and scale-out systems,”
arXiv preprint arXiv:2003.09518, 2020.

[41] M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C.-J. Wu, A. G. Azzolini et al., “Deep
learning recommendation model for personalization and
recommendation systems,” arXiv preprint arXiv:1906.00091, 2019.

[42] L. Pentecost, M. Donato, B. Reagen, U. Gupta, S. Ma, G.-Y. Wei, and
D. Brooks, “Maxnvm: Maximizing dnn storage density and inference
efficiency with sparse encoding and error mitigation,” in Proceedings
of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019, pp. 769–781.

[43] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling
low-power, highly-accurate deep neural network accelerators,” in
Proceedings of the ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2016, pp. 267–278.

[44] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna,
“Scale-sim: Systolic cnn accelerator simulator,” arXiv preprint
arXiv:1811.02883, 2018.

[45] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 4510–4520.

[46] H.-J. M. Shi, D. Mudigere, M. Naumov, and J. Yang, “Compositional
embeddings using complementary partitions for memory-efficient
recommendation systems,” in Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining,
2020, pp. 165–175.

[47] F. Silfa, G. Dot, J.-M. Arnau, and A. Gonzalez, “E-PUR: An
energy-efficient processing unit for recurrent neural networks,” 2017.
[Online]. Available: https://arxiv.org/pdf/1711.07480.pdf

[48] L. Song, J. Mao, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Hypar:
Towards hybrid parallelism for deep learning accelerator array,” in
2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2019, pp. 56–68.

[49] M. Wilkening, U. Gupta, S. Hsia, C. Trippel, C.-J. Wu, D. Brooks, and
G.-Y. Wei, “Recssd: Near data processing for solid state drive based
recommendation inference,” in 26th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2021.

[50] M. Xie, K. Ren, Y. Lu, G. Yang, Q. Xu, B. Wu, J. Lin, H. Ao, W. Xu,
and J. Shu, “Kraken: Memory-efficient continual learning for
large-scale real-time recommendations,” in Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’20. IEEE Press, 2020.

[51] X. Yi, Y.-F. Chen, S. Ramesh, V. Rajashekhar, L. Hong, N. Fiedel,
N. Seshadri, L. Heldt, X. Wu, and E. H. Chi, “Factorized deep
retrieval and distributed tensorflow serving,” ser. SysML’18, 2018.

[52] C. Yin, B. Acun, X. Liu, and C.-J. Wu, “Tt-rec: Tensor train
compression for deep learning recommendation models,” ser.
MLSys’21, 2021.

[53] J. Zhang, S. Elnikety, S. Zarar, A. Gupta, and S. Garg,
“Model-switching: Dealing with fluctuating workloads in
machine-learning-as-a-service systems,” in 12th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud), 2020.

[54] J. J. Zhang, P. Raj, S. Zarar, A. Ambardekar, and S. Garg, “Compact:
On-chip compression of activations for low power systolic array based
cnn acceleration,” ACM Trans. Embed. Comput. Syst., vol. 18, no. 5s,
Oct. 2019.

[55] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-X: An accelerator for sparse neural networks,”
in 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Oct 2016, pp. 1–12.

[56] W. Zhao, D. Xie, R. Jia, Y. Qian, R. Ding, M. Sun, and P. Li,
“Distributed hierarchical gpu parameter server for massive scale deep
learning ads systems,” 2020.

[57] W. Zhao, J. Zhang, D. Xie, Y. Qian, R. Jia, and P. Li, “Aibox: Ctr
prediction model training on a single node,” in Proceedings of the 28th
ACM International Conference on Information and Knowledge
Management, ser. CIKM ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 319–328.

[58] Z. Zhao, L. Hong, L. Wei, J. Chen, A. Nath, S. Andrews,
A. Kumthekar, M. Sathiamoorthy, X. Yi, and E. Chi, “Recommending
what video to watch next: A multitask ranking system,” in
Proceedings of the 13th ACM Conference on Recommender Systems,
ser. RecSys ’19. New York, NY, USA: ACM, 2019, pp. 43–51.
[Online]. Available: http://doi.acm.org/10.1145/3298689.3346997

[59] G. Zhou, N. Mou, Y. Fan, Q. Pi, W. Bian, C. Zhou, X. Zhu, and
K. Gai, “Deep interest evolution network for click-through rate
prediction,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, 2019, pp. 5941–5948.

[60] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li,
and K. Gai, “Deep interest network for click-through rate prediction,”
in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, 2018, pp. 1059–1068.

13

https://www.kaggle.com/c/criteo-display-ad-challenge
https://arxiv.org/pdf/1711.07480.pdf
http://doi.acm.org/10.1145/3298689.3346997

	1 Introduction
	2 Motivation: Widening Design Space by Optimizing for Quality over Accuracy Alone
	2.1 Training hyperparameter sweep
	2.2 Quality versus accuracy

	3 RecPipe Design: A System to Optimize Multi-Stage Recommendation Inference
	3.1 Hardware-aware multi-stage scheduling
	3.2 Custom hardware to accelerate multi-stage recommendation

	4 Experimental Methodology
	5 Evaluation of RecPipe Inference Scheduler on Commodity Hardware
	5.1 Mapping multi-stage pipelines to CPUs
	5.2 Mapping multi-stage pipelines to heterogeneous systems

	6 Analysis of RecPipeAccel's Design Space
	6.1 Mapping multi-stage pipelines to RPAccel
	6.2 Customization of RPAccel micro-architecture

	7 Evaluation of RPAccel At-Scale
	7.1 RPAccel evaluation on open-source use cases
	7.2 RPAccel evaluation on future models

	8 Summary of RecPipe Results
	9 Related Work
	10 Conclusion

