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ABSTRACT
Neural personalized recommendationmodels are used across a wide
variety of datacenter applications including search, social media,
and entertainment. State-of-the-art models comprise large embed-
ding tables that have billions of parameters requiring large memory
capacities. Unfortunately, large and fast DRAM-based memories
levy high infrastructure costs. Conventional SSD-based storage
solutions offer an order of magnitude larger capacity, but have
worse read latency and bandwidth, degrading inference perfor-
mance. RecSSD is a near data processing based SSD memory sys-
tem customized for neural recommendation inference that reduces
end-to-end model inference latency by 2× compared to using COTS
SSDs across eight industry-representative models.

CCS CONCEPTS
•Hardware→ External storage; • Computer systems organi-
zation→ Neural networks.
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1 INTRODUCTION
Recommendation algorithms are used across a variety of Inter-
net services such as social media, entertainment, e-commerce, and
search [20, 37, 43–45]. In order to efficiently provide accurate, per-
sonalized, and scalable recommendations to users, state-of-the-art
algorithms use deep learning based solutions. These algorithms
consume a significant portion of infrastructure capacity and cycles
in industry datacenters. For instance, compared to other AI-driven
applications, recommendation accounts for 10× the infrastructure
capacity in Facebook’s datacenter [20, 28, 30]. Similar capacity re-
quirements can be found at Google, Alibaba, and Amazon [43–45].

One of the key distinguishing features of neural recommendation
models is processing categorical input features using large embed-
ding tables. While large embedding tables enable higher personal-
ization, they consume up to hundreds of GBs of storage [20, 32]. In
fact, in many cases, the size of recommendation models is set by the
amount of memory available on servers [20]. A promising alterna-
tive is to store embedding tables in SSDs. While SSDs offer orders
of magnitude higher storage capacities than main memory systems,
they exhibit slower read and write performance. To hide the longer
SSD read and write latencies, previous SSD based systems overlap
computations from other layers in the recommendation models
and cache frequently accessed embedding vectors in DRAM-based
main memory [17, 41, 42].

We propose RecSSD, a near data processing (NDP) solution cus-
tomized for recommendation inference that improves the perfor-
mance of the underlying SSD storage for embedding table oper-
ations. In order to fully utilize the internal SSD bandwidth and
reduce round-trip data communication overheads between the host
CPU and SSD memory, RecSSD offloads the entire embedding ta-
ble operation, including gather and aggregation computations, to
the SSDs. Compared to baseline SSD, we demonstrate that RecSSD
provides a 4× improvement in embedding operation latency and
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2× improvement in end-to-end model latency on a real OpenSSD
system. In addition to offloading embedding operations, RecSSD
exploits the locality patterns of recommendation inference queries.
RecSSD demonstrates that a combination of host-side and SSD-side
caching complement NDP and reduce end-to-end model inference
latency. To demonstrate the feasibility and practicality of the pro-
posed design in server-class datacenter systems, We implement
RecSSD on a real, open-source Cosmos+OpenSSD system within
the Micron UNVMe driver library.

The key contributions of this paper are:

• We design RecSSD, the first NDP-based SSD system for rec-
ommendation inference. Improving the performance of con-
ventional SSD systems, the proposed design targets the main
performance bottleneck to datacenter scale recommendation
execution using SSDs. Furthermore, the latency improve-
ment further enables recommendation models with higher
storage capacities at reduced infrastructure cost.

• We implement RecSSD in a real system on top of the Cos-
mos+OpenSSD hardware. The implementation demonstrates
the viability of Flash-based SSDs for industry-scale recom-
mendation. In order to provide a feasible solution for datacen-
ter scale deployment, we implement RecSSD within the FTL
firmware; the interface is compatible with existing NVMe
protocols, requiring no hardware changes.

• We evaluate the proposed design across eight industry repre-
sentative models across various use cases (e.g., social media,
e-commerce, entertainment). Of the eight, our real system
evaluation shows that five models — whose runtime is domi-
nated by compute-intensive FC layers — achieve comparable
performance using SSD compared to DRAM. The remain-
ing three models are dominated by memory-bound, embed-
ding table operations. On top of the highly optimized hybrid
DRAM-SSD systems, we demonstrate that RecSSD improves
performance by up to 4× for individual embedding opera-
tions, translating into up to 2× end-to-end recommendation
inference latency reduction.

2 BACKGROUND

2.1 Recommendation Systems
Often found in commercial applications, recommendation systems
recommend items to users by predicting said items’ values in the
context of the users’ preferences. In fact, meticulously tuned per-
sonalized recommendation systems form the backbone of many
internet services – including social media, e-commerce, and online
entertainment [22, 30, 43–45] – that require real-time responses.
Modern recommendation systems implement deep learning-based
solutions that enable more sophisticated user-modeling. Recent
work shows that deep-learning based recommendation systems not
only drive product success[13, 37, 40] but also dominate the data-
center capacity for AI training and inference [20, 21, 29]. Thus, there
exists a need to make dataceter-scale recommendation solutions
more efficient and scalable.

Overview of model architecture As shown in Figure 1, deep
learning-based recommendationmodels comprise both fully-connected
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Figure 1: Recommendation models process both categorical
and continuous input features.

(FC) layers and embedding tables of various sizes. FC layers stress
compute capabilities by introducing regular MAC operations while
embedding table references stress memory bandwidth by introduc-
ing irregular memory lookups. Based on the specific operator com-
position and dimensions, recommendation models span a diverse
range of architectures. For instance, the operators that combine
outputs from Bottom FC and embedding table operations depend
on the application use case. Furthermore, recommendation models
implement a wide range of sizes of FC layers and embedding tables.

Processing categorical inputs Unique to recommendations,
models process categorical input features using embedding table
operations. Embedding tables are organized such that each row
is a unique embedding vector typically comprising 16, 32, or 64
learned features (i.e., number of columns for the table). For each
inference, a set of embedding vectors, specified by a list of IDs
(e.g., multi-hot encoded categorical inputs) is gathered and aggre-
gated together. Common operations for aggregating embedding
vectors together include sum, averaging, concatentation, andmatrix
multiplication [30, 43–45]; Figure 1 shows an example using sum-
mation. Inference requests are often batched together to amortize
control overheads and better utilize computational resources. Addi-
tionally models often comprise many embedding tables. Currently,
production-scale datacenter store embedding tables in DRAMwhile
CPU perform embedding table operations, optimizations such as
vectorized instructions and software prefetching [2].

The embedding table operations pose unique challenges:

(1) Capacity: Industry-scale embedding tables have up to hun-
dreds of millions of rows leading to embedding tables that
often require up to ∼10GBs of storage [20]. In fact, publica-
tions from industry illustrate that the aggregate capacity of
all embedidng tables in a neural recommendation model can
require TBs of storage [41, 42]

(2) Irregular Accesses: Categorical input features are sparse,
multi-hot encoded vectors. High sparsity leads to a small
fraction of embedding vectors being access per request. Fur-
thermore, access patterns between subsequent requests from
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different users can be quite different causing embedding table
operations to incur irregular accesses.

(3) Low Compute Intensity: The overall compute intensity of
the embedding tables are orders of magnitude lower than
other deep learning workloads precluding efficient execution
using recently proposed SIMD, systolic array, and dataflow
hardware accelerators [20].

These three features – large capacity requirements, irregular
memory accesses, and low compute intensity – make Flash tech-
nology an interesting target for embedding tables.

2.2 Flash memory systems

Figure 2: In order to support a high performance and simple
logical block interface to the host while handling the pecu-
liarities of NAND Flash memories, SSDs are designed with a
Microprocessor operating alongside dedicated memory con-
trollers.

Architecture of Flash NAND flash memory is the most widely
used SSD building block on the market. Compared to traditional
disk-based storage systems, NAND flash memories offer higher
performance in terms of latency and bandwidth for reads and
writes [12]. Figure 2 illustrates the overall architecture of NAND
Flash storage systems. To perform a read operation, the host com-
municates over PCIe using an NVMe protocol to a host controller
on the SSD. The host requests logical blocks, which are served by a
flash translation layer (FTL) running on a microprocessor on the
SSD. The FTL schedules and controls an array of Flash controllers,
which are organized per channel and provide specific commands
to all the Flash DIMs (chips) on a channel and DMA capabilities
across the multiple channels. In order to transfer data between the
Flash controller’s DMA engines and the host NVMe DMA engine,
the controller uses an on-board DRAM buffer.

Flash Translation Layer (FTL) In order to maintain compat-
ibility with existing drivers and file systems, Flash SSD systems
implement the FTL. The FTL exposes a logical block device interface
to the host system while managing the underlying NAND Flash
memory system. This includes performing key functions such as (1)
maintaining indirect mapping between logical and physical pages,
(2) maintaining a log-like write mechanism to sequentially add data
in erase blocks and invalidate stale data [33], (3) garbage collection,
and (4) wear leveling. As shown in Figure 2, to perform this diverse
set of tasks, the FTL runs on a general purpose microprocessor.

Performance characteristics of SSD storage Compared to
DRAM-based main memory systems, Flash-based storage systems
have orders of magnitude higher storage densities [12] enabling
higher capacities at lower infrastructure cost, around 4-8x cheaper
than DRAM per bit [16]. Despite these advantages, Flash poses
many performance challenges. One single flash memory package
provides a limited bandwidth of 32-40MB/sec [11]. In addition,
writes to flash memory are often much slower, incurring 𝑂(ms)
latencies. To help address these limitations, SSDs are built to ex-
pose significant internal bandwidth by organizing flash memory
packages as an array of connected channels (e.g., 2-10) handled by
a single memory controller. Since logical blocks can be striped over
multiple flash memory packages, data accesses can be conducted
in parallel to provide higher aggregated bandwidth and hide high
latency operations through concurrent work.

3 SSD STORAGE FOR NEURAL
RECOMMENDATION

To better understand the role of SSD storage for neural recommen-
dation inference, we begin with initial characterization. First, we
present the memory access pattern characterization for recommen-
dation models running in a cloud-scale production environmentand
describe the locality optimization opportunities for performing em-
bedding execution on SSDs. Then, we take a step further to study
the impact of storing embedding tables and performing associated
computation in SSDs as opposed to DRAM [26]. The characteriza-
tion studies focus on embedding table operations, followed by the
evaluation on the end-to-end model performance.

3.1 Embedding access patterns in production
models

One important property of SSD systems is that SSDs operate as
block devices where data is transferred in coarse chunks. This is
an important factor when considering efficient bandwidth use of
SSDs. The hardware is designed for sequential disk access, where
data is streamed in arbitrarily large chunks. However, larger ac-
cess granularity penalizes performance for workloads that require
random, sparse accesses – embedding table access and operation
in neural recommendation models. Therefore, it is important to
understand unique memory access patterns of embedding tables.
Furthermore, caching techniques become even more important to
exploit temporal reuse and maximize spatial locality from block
accesses.

Figure 3 depicts the reuse distribution of embedding tables in
the granularity of 256B, 1KB, and 4KB, respectively. The x-axis rep-
resents pages accessed over the execution of real-time recommen-
dation inference serving (sorted by the corresponding hit counts
in the ascending order) whereas the y-axis shows the cumulative
hit counts, by analyzing embedding table accesses logged for rec-
ommendation models running in a cloud-scale production environ-
ment. Access patterns to embedding tables follow the power-law
distribution. Depending on the page sizes, the slope of the tail
changes. The majority of reuse remains concentrated in a few hot
memory regions — a few hundred pages capture 30% of reuses while
caching a few thousand pages can extend reuse over 50%.
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Figure 3: Access patterns to neural recommendation embed-
ding tables follow the power-law distribution.

Figure 4: Locality patterns vary significantly across different
embedding tables. Using a 16-way LRU 4KB page cache of
varying total capacities, the hit rate varieswildly fromunder
10% to over 90% across different embedding tables.

The concentration of hot pages varies across individual embed-
ding tables. Figure 4 characterizes the memory locality patterns
across different, individual embedding tables. Using a 16-way, LRU,
4KB page cache of varying cache capacities, the hit rate varies
wildly from under 10% to over 90% across the different embedding
tables of recommendation models running in a cloud-scale pro-
duction environment. As the capacity of the page cache increases,
more embedding vectors can be captured in the page cache, leading
to higher reuses. With a 16MB page cache per embedding table,
more than 50% of reuses can be achieved across all the embedding
tables analyzed in this study. The specific page cache capacity per
embedding table can be further optimized for better efficiency.

Locality in embedding table accesses influences the design and
performance of SSD systems in many ways. First, on-board SSD
caching is difficult due to the limited DRAM capacity and the poten-
tially large reuse distances. Despite this, the distribution of reuse
and the relatively small collection of hot pages suggest reason-
able effectiveness of static partitioning strategies, where hot pages
can be stored in host-side DRAM. But, most importantly, the vary-
ing page reuse patterns (Figure 4) suggests that, although in some
cases, caching can be used to effectively deal with block access,
strategies for more efficiently handling sparse access is also needed.
Previous work [17] has thoroughly investigated advanced caching

Figure 5: Using a table configuration typical of industry
scale models [19, 20] and a range of batch sizes, the Sparse
Length Sum (SLS) embedding table operation slows down
significantly using SSD storage over DRAM.

techniques, while we propose orthogonal solutions which specifi-
cally target increasing the efficiency of sparse accesses. We evaluate
our proposed techniques by using somewhat simpler caching strate-
gies (standard LRU software caching and static partitioning) and
sweeping the design space across a variety of input locality distri-
butions.

3.2 Performance of individual embedding
operations

Given their unique memory access patterns, storing embedding ta-
bles in SSD versus DRAM has a large impact on performance given
the characteristics of the underlying memory systems. Figure 5
illustrates the performance of a single embedding table operation
using DRAM versus SSD across a range of batch-sizes. The em-
bedding table has one million rows, with an embedding vector
dimension of 32, and 80 lookups per table, typical for industry-scale
models such as Facebook’s embedding-dominated recommendation
networks [19, 20]. For an optimized DRAM-based embedding table
operation, we analyze the performance of the SparseLengthsSum
operation in Caffe2 [1]. As shown in Figure 5, compared to the
DRAM baseline, accessing embedding tables stored in the SSD in-
curs three orders of magnitude longer latencies. This is a result of
software overhead in accessing embedding tables over PCIe as well
as the orders-of-magnitude lower read bandwidth in the underlying
SSD system — 10K IOPS or 10𝑀𝐵/𝑠 random read bandwidth on SSD
versus 1𝐺𝐵/𝑠 on DRAM. Thus, while SSD storage offers appealing
capacity advantage for growing industry neural recommendation
models, there is significant room to improve the performance of
embedding table operations.

3.3 Performance of end-to-end
recommendation models

While embedding tables enable recommendation systems to more
accurately model user interests, as shown in Figure 1, embedding is
only a component when considering end-to-end recommendation
inference. Thus, to understand the end-to-end performance impact
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Figure 6: Performance degradation from using Flash based
embedding table operations is model dependant. Storing ta-
bles in SSD for WND, MTWND, DIEN, and NCF increases
model latency by 1.01×, 1.01×, 1.09×, and 1.01×, versus
DRAM.

by offloading embedding tables to the SSD memory, we character-
ize the performance impact on recommendation inference over a
representative variety of network model architectures.

Our evaluations use eight open-source recommendation mod-
els [19] representing industry-scale inference use cases from Face-
book, Google, and Alibaba [20, 22, 30, 43–45]. For the purposes of
this study, models are clustered into two categories based on the
respective performance characteristics: embedding-dominated and
MLP-dominated. MLP-dominated models, such as Wide and Deep
(WD), Multi-Task Wide and Deep (MTWND), Deep Interest (DIN),
Deep Interest Evolution (DIEN), and Neural Collaborative Filtering
(NCF), spend the vast majority of their execution time on matrix op-
erations. On the other hand, embedding-dominated models, such as
DLRM-RMC1, DLRM-RMC2, and DLRM-RMC3, spend the majority
of their time processing embedding table operations. We refer the
reader to [19] for detailed operator breakdowns and benchmark
model characterizations.

Figure 6 shows the execution time of the eight recommendation
models at a batch-size of 64 when embedding tables are stored
in DRAM and in SSD, respectively. The execution time for MLP-
dominated models remains largely unaffected between the two
memory systems. Compared to DRAM, storing tables in SSD for
WND, MTWND, DIEN, and NCF increases the model latency by
1.01×, 1.01×, 1.09×, and 1.01×. On the other hand, storing em-
bedding tables in SSD instead of DRAM significantly impacts the
execution time for embedding-dominated models. For instance, the
execution time of embedding-dominated models, such as DLRM-
RMC1, DLRM-RMC2, DLRM-RMC3, degrades by several orders of
magnitude.

3.4 Opportunities for acceleration and
optimization

Given the performance characterization of individual embedding
operations and end-to-end models when embeddings are stored in
SSDs, we identify many opportunities for inference acceleration
and optimization. First, the overwhelming majority of execution
time in MLP-dominated models is devoted to matrix operations;
thus SSDs systems offer an exiting solution to store embedding
tables in high-density storage substrates, lowering infrastructure
costs for datacenter scale recommendation inference.

While SSDs is an appealing target for MLP-dominated models,
there is significant room for performance improvement, particu-
larly when embedding table operations are offloaded to SSDs for

embedding-dominated recommendation models. To bridge the per-
formance gap, this paper proposes to use near data processing
(NDP) by leveraging the existing compute capability of commod-
ity SSDs. Previous work has shown that NDP-based SSD systems
can improve performance across a variety of different application
spaces such as databases and graph analytics [31, 34]. NDP solutions
work particularly well when processing gather-reduce operations
over large quantities of input data using lightweight computations.
Embedding table operations follow this compute paradigm as well.
NDP can help reduce round-trip counts and latency overheads in
PCIe communication as well as improve the SSD bandwidth utiliza-
tion by co-locating compute with the Flash-based storage systems
(more detail in Section 4).

In summary, the focus of this work is to demonstrate the viability
of SSD-based storage for the MLP-dominated recommendation models
and to customize NDP-based SSD systems for neural recommendation
in order to unlock the advantages of SSD storage capacity for the
embedding-dominated models.

4 RECSSD DESIGN
We present RecSSD, a near-data processing (NDP) solution for
efficient embedding table operations on SSD memory. Compared
to traditional SSD storage systems, RecSSD increases bandwidth to
Flash memories by utilizing internal SSD bandwidth rather than
external PCIe, greatly reducing unused data transmitted over PCIe
by packing useful data together into returned logical blocks, and
reduces command and control overheads in the host driver stack by
reducing the number of I/O commands needed for the same amount
of data. To maintain compatibility with exisitng NVMe protocol
and drivers, RecSSD is implemented within the FTL of the SSD,
requiring no modifications to the hardware substrate and paving
the way for datacenter scale deployment. This section describes the
overall RecSSD design and implementation. First we outline how
embedding operations are mapped to the FTL in SSD systems; next,
we detail how RecSSD exploits temporal locality in embedding table
operations to improve performance; and finally, we describe the
feasibility of implementing RecSSD in real systems.

4.1 Mapping Embedding Operations to the FTL
RecSSD is designed to accelerate embedding table operations for
recommendation inference. In most high-level machine learning
frameworks, these embedding operations are implemented as spe-
cific custom operators. These operators can be implemented us-
ing a variety of backing hardware/software technologies, typically
DRAM based data structures for conventional embedding opera-
tions. RecSSD implements embedding operations using SSD storage
bymoving computation into the SSD FTL, and on the host using cus-
tom NDP based drivers within the higher-level framework operator
implementation.

Given the large storage requirements, embedding table opera-
tions (e.g., SparseLengthSum in Caffe2), span multiple pages within
SSD systems. A standard FTL provides highly optimized software
that supports individual page scheduling and maintenance; Rec-
SSD operates on top of request queues and data buffers designed for
individual Flash page requests and operations. In order to support
multi-page SparseLengthSum (SLS) operations, we add a scheduling
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layer – with accompanying buffer space and request queues – on
top of the existing page scheduling layer. The proposed SLS sched-
uling layer feeds individual page requests from a set of in-flight SLS
requests into the existing page-level scheduler to guarantee high
throughput across SLS requests. The existing page-level schedul-
ing proceeds as normal to ensure page operations maximize the
available internal memory parallelism.

Figure 7 details the proposed RecSSD design, which augments
SSD systems with NDP to improve internal Flash memory band-
width and overall performance of embedding table operations.

Data-structures In particular, to support NDP SLS, RecSSD adds
two major system components: a pending-SLS-request buffer and a
specialized embedding cache. These components are colored red in
Figure 7.

Each SLS operation allocates an entry in the pending SLS request
buffer. Each entry contains five major elements: (Input Config)
buffer space to store SLS configuration data passed from the host,
(Status) various data structures storing reformatted input config-
uration and counters to track completion status, (Pending Flash
Page Requests) a queue of pending Flash page read requests to
be submitted to the low-level page request queues, (Pending Host
Page Requests) a queue of pending result logical block requests to
be serviced to the host upon completion, and (Result Scratchpad)
buffer space for those result pages.

Initiating embedding request When the FTL receives an SLS
request in the form of a write-like NVMe command, the FTL allo-
cates an SLS request entry. The FTL then triggers the DMA of the
configuration data from the host using the NVMe host controller
(step 1a). Upon receipt of that configuration data, the FTL will need
to process the data, initializing completion status counters and pop-
ulating custom data structures containing the reformatted input
data (populating element 2 - Status). This processing step computes
which flash Pages must be accessed and separates input embed-
dings by flash Page, such that the per-page processing computation
can easily access its own input embeddings. During this scan of
the input data, a fast path may also check for availability of input
embeddings in an embedding cache (discussed later this section),
avoiding flash Page read requests (step 2a), and otherwise placing
those Flash page requests in the pending queue (step 2b). Upon
completion of the configuration processing the request entry is
marked as configured, and pending Flash page requests may be
pulled and fed into the low-level page request queues (step 3a). If
the page exists within the page cache already, the page may be
directly processed (step 3b). When the FTL receives a SLS read-like
NVMe command (asynchronous with steps 2-5), it searches for the
associated SLS request entry and populates the pending host page
request queue (step 1b).

Issuing individual Flash requests At a high level of the FTL
scheduler polling loop, the scheduler will maintain a pointer to
an entry in the SLS request buffer. Before processing low-level
request queues, the scheduler will fill the queues from the current
SLS entry’s pending Flash page request queue. The scheduler will
then perform an iteration of processing the low level page request
queues, and increment the SLS request buffer pointer regardless of
completion, such that requests are handled fairly in a round robin
fashion.

Returning individual Flash requests Upon completion of a
Flash page read request which is associated with an SLS request
(step 4), the extraction and reduction computation will be triggered
for that page. The embeddings required for the request which reside
in that page will be read from the page buffer entry and accumu-
lated into the appropriate result embedding in the result buffer
space for that SLS request (step 5). The reformatted input configu-
ration allows the page processing function to quickly index which
embeddings need to be processed and appropriately update the
completion counters.

Returning embedding requests Again at a high level of the
FTL scheduler polling loop, the scheduler will check for completed
host page requests within an SLS request. If completed pages are
ready, and the NVMe host controller is available, the scheduler will
trigger the controller to DMA the result pages back to the host
(step 6). Upon completion of all result pages in a SLS request the
SLS request entry will be deallocated. The NVMe host controller
will automatically track completed pages and complete NVMe host
commands.

4.2 Exploiting temporal locality in embedding
operations

Multi-threading and PipeliningAside from the base NDP imple-
mentation, there are a number of conventional optimizations that
can be applied on top of the NDP Flash operation. Multi-threading
and software pipelining can be used to overlap NDP SLS I/O opera-
tions with the rest of the neural network computation. For this we
use a threadpool of SLS workers to fetch embeddings and feed post-
SLS embeddings to neural network workers. We match our SLS
worker count to the number of independent available I/O queues in
our SSD driver stack. We then match our neural network workers
to the available CPU resources.

DRAM caching is another technique which has been previously
studied [17] in the context of recommendation inference serving.
With our NDP implementation, there is the option for both host
DRAM caching and SSD internal DRAM caching.

Host-side DRAM Caching Because our NDP SLS operator re-
turns accumulated result embeddings to the host, we cannot use our
workload’s existing NDP SLS requests to populate a host DRAM
embedding cache. In order to still make use of available host DRAM,
we implement a static partitioning technique utilizing input data
profiling which can partition embedding tables such that frequently
accessed embeddings are stored in host DRAM, while infrequently
used embeddings are stored on the SSD. This solution is motivated
by the characterization in Section 3.1, showcasing the power law
distribution of page access. Because there exist relatively few highly
accessed embeddings, static partitioning becomes a viable solution.
With this feature, our system requests the SSD embeddings using
our NDP function, and post processes the returned partial sums to
include embeddings contained in the DRAM cache on the host.

SSD-side DRAM Caching For host DRAM caching, it is en-
tirely feasible to use a large fully associative LRU software cache.
However, for SSD internal DRAM caching, we must more carefully
consider the implementation overheads of our software caching
techniques. The FTL runs on a relatively simple CPU, with limited
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Figure 7: The lifetime of an SSD based SLS operator. The addition of an SLS request buffer and a specialized embedding cache
support the multi-page operation.

DRAM space. The code and libraries available are specifically de-
signed for embedded systems, such that the code is compact and
has low computation overhead, as well as having more consistent
performance. The SSD FTL is designed without dynamic memory
allocation and garbage collection. When implementing any level
of associativity, the cost of maintaining LRU or pseudo LRU infor-
mation on every access must be balanced against cache hit-rate
gains. For the current evaluations we implement a direct-mapped
SSD-side DRAM cache.

4.3 Feasibility and Implementation: NDP SLS
Interface

Our custom interface maintains complete compatibility with the
existingNVMe protocol, utilizing a single unused command bit to in-
dicate embedding commands. Other than this bit, our interface sim-
ply uses the existing command structure of traditional read/write
commands. Embedding processing parameters are passed to the
SSD system with a special write-like command, which initiates
embedding processing. A subsequent read-like command gathers
the resulting pages. The parameters passed include embedding vec-
tor dimensions such as attribute size and vector length, the total
number of input embeddings to be gathered, the total number of
resulting embeddings to be returned, and a list of (input ID, result
ID) pairs specifying the input embeddings and their accumulation
destinations. Adding a restriction that this list be sorted by input
ID enables more efficient processing on the SSD system, which
contains a much less powerful CPU than the host system. The
configuration-write command and result-read command are associ-
ated with each-other internally in the SSD by embedding a request
ID into the starting logical block address (SLBA) of the requests.
The SLBA is set as the starting address of the targeted embedding
table added with the unique request ID. By assuming a minimum ta-
ble size and alignment constraints, the two inputs can be separated
within the SSD system using the modulus operator.

We also note that in addition to maintaining compatibility with
existing NVMe protocol, by implementing support for embedding
table operations purely through software within the SSD FTL, we
ensure RecSSD is fully compatible with existing commodity SSD
hardware. This method of implementation relies on the lightweight
nature of the required computation, such that the SSD micropro-
cessor does not become overly delayed in its scheduling functions
by performing the extra reduction computation.

5 METHODOLOGY AND IMPLEMENTATION
This section describes the methodology and experimental setup
used to evaluate the proposed RecSSD design. Here we summarize
the OpenSSD platform, Micron UNVMe, recommendation mod-
els, and input traces used. Additional details can be found in the
Appendix.

OpenSSD In order to evaluate the efficacy of offloading the SLS
operator onto the SSD FTL, we implement a fully functional NDP
SLS operator in the open source Cosmos+ OpenSSD system [4]. The
development platform, Cosmos+ OpenSSD, has a 2TB capacity, fully
functional NVMe Flash SSD, and a customizable Flash controller and
FTL firmware. In order to provide a feasible solution for datacenter
scale deployment, we implement RecSSDwithin the FTL firmware;
the interface is compatible with existing NVMe protocol, requiring
no hardware changes.

Micron UNVMe In addition to the NVMe compatible OpenSSD
system, the RecSSD interface is implemented within the Micron
UNVMe driver library [10]. We modify the UNVMe driver stack to
include two additional commands, built on top existing command
structures for NVMe read/write commands and distinguished by
setting an additional unused command bit, as described in Sec-
tion 4. The command interface enables flexible input data and
command configurations, while maintaining compatibility with
the existing NVMe host controller. The UNVMe driver makes use
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of a low latency userspace library, which polls for the comple-
tion of NVMe read commands, and uses the maximum number of
threads/command queues.

Neural recommendationmodels To evaluate RecSSD, we use
a diverse set of eight industry-representative recommendation mod-
els provided in DeepRecInfra [19], implemented in Python using
Caffe2 [1]. In order to evaluate the performance of end-to-end
recommendation models on real systems, we integrate the Sparse-
LengthsSum operations (embedding table operations in Caffe2)
with the custom NDP solution. We offload embedding operations
to RecSSD, we design a low-overhead Python-level interface using
CTypes, which allows us to load the modified UNVMe as a shared
library and call NVMe and NDP SLS I/O commands. In the future
these operations could be ported into a custom Caffe2 operator
function, and compiled along with the other Caffe2 C++ binaries.

Input traces and Performance Metrics In addition to the rec-
ommendation models themselves, we instrument the networks
with synthetically generated input traces. We instrument the open-
source synthetic trace generators from Facebook’s open-scourced
DLRM [30] with the locality analysis from industry-scale recom-
mendation systems shown in Figure 4. The synthetic trace generator
is instrumented with likelihood distributions for input embeddings
across stack distances of previously requested embedding vectors.
We generate exponential distributions based on a parameter value,
𝐾 . Sweeping 𝐾 generates input traces with varying degrees of lo-
cality; for instance, setting 𝐾 equal to 0, 1, and 2 generates traces
with 13%, 54%, and 72% unique accesses respectively [17, 20]. Given
the high cache miss rates and our locality analysis, we assume a
single embedding vector per SSD page of 16KB. For the evaluation
results, we assume embedding tables have 1 million vectors and
host-side DRAM caches store up to 2K entries per embedding table.

Because our prototype limits us to single-model single-SSD sys-
tems, we do not focus our results on latency-bounded throughput,
but rather direct request latencies, a critical metric for determining
the performance viability of SSD based recommendation. We av-
erage latency results across many batches, ensuring steady-state
behavior.

Physical Compute Infrastructure All experiments are run
on a Quad-core Intel Skylake desktop machine. Our machine uses
G.SKILL TridentZ Series 64GB (4 x 16GB) 288-Pin DDR4 SDRAM
DDR4 3200 (PC4 25600) Desktop Memory Model F4-3200C14Q-
64GTZ DRAM. DRAM has nanosecond-scale latencies, and 10s of
GB/s in throughput. Our prototype SSD system supports 10K IOPs
per channel with 8 channels and a page size of 16KB, leading to
maximum throughput with sequential read of just under 1.4GB/s.
Newer SSD systems will have higher throughput. Single page access
latencies are in the 10s to 100s of microseconds range.

6 EVALUATING RECSSD
Here we present empirical results evaluating the performance of
RecSSD. Overall, the results demonstrate that RecSSD provides up
to 2× speedup over baseline SSD for recommendation inference.
This section first analyzes the fundamental tradeoffs of RecSSDus-
ing micro-benchmarks based on embedding table operations. Fol-
lowing the micro-benchmark analysis, the section compares the
performance of end-to-end recommendation models between base-
line SSD systems and RecSSD. Expanding upon this analysis, we

Figure 8: The standalone performance of the SLS embed-
ding operator. Performance is shown for both sequential
and strided access patterns, using both conventional SSD in-
terfaces and NDP interfaces, on a variety of batch sizes.

present performance tradeoffs between baseline SSD systems and
RecSSD using both host-side and SSD-side DRAM caching in order
to exploit temporal locality in embedding table accesses. Finally,
the section conducts a sensitivity study on the impact of individual
recommendation network architectural parameters on RecSSD per-
formance. The sensitivity analysis provides insight into RecSSD’s
performance on future recommendation models.

6.1 Accelerating embedding table operations
Figure 8 presents the performance of embedding table operations
(i.e., SparseLengthsSum in Caffe2 [2]). For RecSSD, the execution
time is categorized five components (i.e., Config Write, Config Pro-
cess, Translation, and Flash Read) over a range of batch sizes. Config
Write and Config Process represent the time taken to transfer config-
uration data to the SSD and the time to process the configuration,
respectively; after the transfers, internal data structures are popu-
lated and Flash page requests begin issuing. Translation represents
the time spent on processing returned Flash pages, extracting the
necessary input embedding vectors, and accumulating the vectors
into the corresponding result buffer space. Flash Read indicates the
time in which the FTL is managing and waiting on Flash memory
operations.

It is difficult to compare the computational throughput of Trans-
lation independently with the IO bandwidth of flash, as the com-
putation is synchronously tightly-coupled with the IO scheduling
mechanisms within the FTL. With hardware modification this com-
putation could be decoupled and made parallel. However, we can
indirectly observe the bottleneck by observing the dominating time
spent in the FTL, whether it is translation computation or flash
read operations.

Following the characterization from Section 3.1, we study two
distinct memory access patterns: SEQ and STR. The Sequential(SEQ)
memory access pattern represents use cases where embedding ta-
ble IDs are contiguous. This is unlikely to happen in datacenter-
scale recommendation inference applications, as shown in Figure 4,
but represents use cases with extremely high page locality. The
Random(STR) memory access patterns are generated with strided
embedding table lookup IDs and representative of access patterns
where each vector accessed is located on a unique Flash page. Given
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Figure 9: NDP alone provides up to 7× performance improve-
ment for some full models given a simple naive configura-
tion.

the large diversity in recommendation use cases, as evidenced by
the variety of recommendation model architectures [19], the two
memory access patterns allow us to study the performance charac-
teristics of RecSSD across a wide variety use cases. Furthermore,
while current recommendation use cases exhibit sparse access pat-
terns, future optimizations in profiling and restructuring embedding
tables may increase the locality.

Performance with low locality embedding accesses Under
the Random memory lookup access pattern, RecSSD achieves up
to a 4× performance improvement over baseline SSD. This per-
formance improvement comes from the increased memory level
parallelism. RecSSD increases memory level parallelism by con-
currently executing Flash requests for each embedding operation,
increasing utilization of the internal SSD bandwidth. As shown in
Figure 8, roughly half the time in the RecSSD’s FTL is spent on
Translation. Given the limited hardware capability of the 1GHz,
dual core ARM A9 processors of the Cosmos+OpenSSD system[4],
we expect that with faster SSD microprocessors or custom logic,
the Translation time could be significantly reduced.

Performance with high locality embedding accesses Com-
pared to the baseline SSD system using conventional NVMe re-
quests, Sequential access patterns with high spatial locality result
in poor NDP performance. Compared to random or low locality ac-
cess patterns, sequential or high locality embedding accesses access
fewer Flash pages but require commensurate compute resources
to aggregate embedding vectors. In the baseline system, the SSD
page cache will hold pages while embedding vectors requests are
sequentially streamed through the system and accumulated by the
CPU. While, RecSSD also acccess fewer Flash pages, the embedding
vectors are aggregated using the dual-core ARM A9 processor on
the Cosmos+OpenSSD system; this accounts for over half the ex-
ecution time (Translation) as shown in Figure 8. With sequential
accesses, the benefits of aggregating faster server class, host Intel
CPU outweighs the lack of overhead of multiple NVMe commands.
We anticipate more sophisticated processors on the NDP system
would close eliminate the slight performance degradation using
RecSSD.

6.2 Accelerating end-to-end recommendation
models

In addition to individual embedding table operations, here we evalu-
ate RecSSD across a selection of industry-representative recommen-
dation models. To start, we showcase the raw potential of NDP, by
presenting the simplest naive experimental configuration. Figure 9

presents the relative speedup of RecSSD over a conventional SSD
baseline, without operator pipelining and caching techniques, and
using randomly generated input indices. We observe that many
models exist where NDP provides no observable benefits, and for
models where performance is limited by embedding operations and
SSD latencies, NDP can provide substantial assistance with up to
7× speedup. The maximum speedup across models shown here is
higher than that of the individual embedding operations (Figure 8)
due to differences in underlying model parameters such as feature
size and indices per lookup as discussed in Section 6.4.

6.3 Exploiting Locality in end to end models
In addition to the end-to-end model results, we evaluate the per-
formance of RecSSD with operator pipelining and caching. These
optimization techniques, as presented in Section 4, are applied on
top of RecSSD and conventional SSD systems.

Figure 10(a-c) presents relative speedup results for RecSSD with
just SSD-side caching and the conventional SSD baseline with host-
side caching. RecSSD utilizes a large, but direct mapped, cache
within the SSD DRAM while the baseline utilizes a fully associative
LRU cache within host DRAM. Batchsizes are swept between 1
and 32, along with the three input trace locality conditions 𝐾 =

0, 1, 2. Hit rates for RecSSD’s SSD DRAM cache are labeled above
each speedup bar. The baseline LRU cache hit rates follow the
inverse of the locality distribution, with 84%, 44%, and 28% hits
in the cache corresponding to 𝐾 equal to 0, 1, and 2 respectively.
Note, the LRU cache hit rates span the diverse set of embedding
access patterns from the initial characterization of production-scale
recommendation models shown in Figure 4.

With high locality (i.e., low𝐾 ), conventional SSD systems achieve
higher performance than RecSSD. On the other hand, with low local-
ity RecSSD outperforms the conventional baseline. This is because
the direct mapped caching hit rate cannot match that of the more
complex fully associative LRU cache on the host system, exempli-
fied in the high batch size runs for RM1. Furthermore, RM2 has
lower SSD cache hit rates compared to RM1/3, a result of the larger
number of embedding lookups required per request and temporal
locality being across requests not lookups. Even so, without host
DRAM caching, RecSSD outperforms the baseline by up to 1.5X for
lower locality traces, where many SSD pages must be accessed and
the benefits of increased internal bandwidth shine.

Figure 10(d-f) presents relative speedup results for RecSSD using
static table partitioning as well as SSD caching. With static table
partitioning, we make use of available host DRAM by statically plac-
ing the most frequently used embeddings within the host DRAM
cache as detailed in Section 4. The hitrates labeled above each bar
represent the hit rates of RecSSD in the statically partitioned host
DRAM cache, not the SSD cache.

Following the conventional SSD baseline, static partitioning
helps in leveraging the available host DRAM memory. For high
temporal locality however it cannot match the hit rate of the fully
associative LRU cache. With higher batch sizes as well as higher
indicies per request (seen in RM2), the hit rate asymptotically ap-
proaches 25%, the size of the static partition relative to the used ID
space. Overall, Figure10 shows that with static partitioning, Rec-
SSD achieves a 2× performance improvement over the conventional
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Figure 10: Relative full model performance improvement including caching techniques. The percentages above each bar rep-
resent the hitrate of either the SSD cache (a-c) or the host partition (d-f) for RecSSD. The baseline LRU cache hitrates always
follow the inverse of the locality distribution, with 84%, 44%, and 28% hits in the cache corresponding to 𝐾 equal to 0, 1, and 2,
respectively.

SSD baseline. This occurs when the baseline host LRU cache has a
relatively low hit rate such that many SSD pages must be accessed,
while RecSSD is able to achieve comparable host DRAM hitrates
with static partitioning.

In general, the above results show that the advantages of RecSSD
shine when pages must be pulled from the SSD, and when the host
level caching strategies available for RecSSD (static partitioning) are
of comparable effectiveness to the baseline LRU software cache. Al-
though RecSSD shows diminishing returns with improved caching
and locality, we note that because RecSSD is fully compatible with
the existing NVMe interface, it can be employed in tandem with
conventional strategies and switched based on the embedding table
locality properties.

6.4 Sensitivity study: Impact of model
architecture

In this section we more closely examine the impact of model pa-
rameters differentiating the performance of our benchmark models.
Table 1 details the parameter space of RM1/2/3. We specifically note
that absolute table size does not impact our results. Growing table
sizes do provide motivation to move from capacity constrained
DRAM to flash SSDs, however embedding lookup performance is
dependant on access patterns, not absolute table size.

Table 1: Differentiating benchmark parameters.

Benchmark Feature Size Indices Table Count

RM1 32 80 8
RM2 64 120 32
RM3 32 20 10

In Figure 11a we see how feature size and quantization, which
affect the size of embedding vectors relative to the page size, show

(a) Feature Size and Quantization (b) Indices and Table Count

Figure 11: Examining the impact of model parameters on
full model executions.

decreasing relative performance as this ratio grows. This is because
the baseline is able to make more efficient use of block accesses as
the lowest unit of memory access approaches the size of a memory
block, while RecSSD must perform more computation on the SSD
microprocessor per page accessed from Flash. In Figure 11b we see
that although increasing table count diminishes performance, this
quickly becomes outscaled by increases in performance from the
increased indices per lookup. The performance loss from increas-
ing table count is due to the implementation of our NDP interface.
Because a single NDP call handles a single table, the amortization
of command overheads is on a per table basis. On the other hand,
increasing the number of indices per lookup increases the amorti-
zation of this control overhead as well as the value of accumulating
these embeddings on the SSD, where only one vector is sent to the
host for all the indices accumulated in a single lookup.
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7 RELATEDWORK
SSD systems Recent advances in flash memory technology have
made it an increasingly compelling storage system for at-scale de-
ployment. Compared to disk based solutions, SSDs offer 2.6× and
3.2× bandwidth perWatt and bandwidth per dollar respectively [12].
Furthermore, given the high density and energy efficiency, SSDs
are being used as datacenter DRAM-replacements as well [12]. In
fact, prior work from Google and Baidu highlight how modern
SSD systems are being used for web-scale applications in datacen-
ters [31, 34]. Furthermore, given recent advances in Intel’s Optane
technology, balancing DRAM-like latency and byte-addressability
with SSD-like density, we anticipate the type of applications that
leverage SSD based storage systems to widen [24]. In fact, training
platforms for terabyte scale personalized recommendation models
rely heavily on SSD storage capabilities for efficient and scalable
execution [41].

In order to enable highly efficient SSD execution, modern storage
solutions rely on programmable memory systems [15]. Leveraging
this compute capability, there has been much work on both soft-
ware and hardware solutions for Near Data Processing in SSDs for
other datacenter applications [14, 18, 25, 31, 35, 36, 38, 39]. Previous
works which target more general SSD NDP solutions have relied on
hardware modifications, complex programming frameworks, and
heavily modified driver subsystems to support the performance
requirements of more complex and general computational tasks.
Our system trades-off this generality for simplicity and application
specific performance and cost efficiency.

Accelerating recommendation inferenceGiven the ubiquity
of AI and machine learning workloads, there have been many pro-
posals for accelerating deep learningworkloads. In particular, recent
work illustrates that recommendation workloads dominate the AI
capacity in datacenters [20]. As a result, recent work proposes accel-
erating neural recommendation. For example, the authors in [23, 27]
propose a customized memory management unit for AI accelerators
(i.e., GPUs) in order to accelerate address translation operations
across multi-node hardware platforms. Given the low-compute in-
tensity of embedding table operations, recent work also explores the
role of near memory processing for Facebook’s recommendation
models [26]. Similarly, researchers have proposed the application
of flash memory systems to store large embedding tables found
in Facebook’s recommendation models [17], exploring advanced
caching techniques to alleviate challenges with large flash page
sizes. These techniques can be used in tandem with RecSSD. In
this paper, we explore the role combining near data processing and
NAND flash memory systems for at-scale recommendation in order
to reduce overall infrastructure cost. Furthermore, we provide a
real system evaluation across a wide collection of recommendation
workloads [19].

8 CONCLUSION
In this paper we propose, RecSSD, a near data processing solution
customized for neural recommendation inference. By offloading
computations for key embedding table operations, RecSSD reduces
round-trip time for data communication and improves internal
SSD bandwidth utilization. Furthermore, with intelligent host-side

and SSD-side caching, RecSSD enables high performance embed-
ding table operations. We demonstrate the feasibility of RecSSD by
implementing it in a real-system using server-class CPUs and an
OpenSSD compatible system with Micron UNVMe’s driver library.
RecSSD reduces end-to-end neural recommendation inference la-
tency by 4× compared to off-the-shelf SSD systems and comparable
performance to DRAM-basedmemories. As a result, RecSSD enables
highly efficient and scalable datacenter neural recommendation in-
ference.
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A ARTIFACT APPENDIX
A.1 Abstract
RecSSD is composed of a number of open sourced artifacts. First,
we implement a fully-functional NDP SLS operator in the open
source Cosmos+ OpenSSD system [4], provided in the RecSSD-
OpenSSDFirmware repository[7]. To maintain compatibility with
the NVMe protocols, the RecSSD interface is implemented within
Micron’s UNVMe driver library [10], provided in the RecSSD- UN-
VMeDriver repository[9]. To evaluate RecSSD, we use a diverse set
of eight industry-representative recommendation models provided
in DeepRecInfra [19], implemented in Python using Caffe2 [1] and
provided in the RecSSD-RecInfra repository[8]. In addition to the
models themselves, we instrument the open-source synthetic trace
generators from Facebook’s open-sourced DLRM [30] with our
locality analysis from production-scale recommendation systems,
also included in the RecSSD-RecInfra repository.

A.2 Artifact check-list (meta-information)
• Compilation: GCC, Python3, PyTorch, Caffe2, Xilinx SDK 2014.4
• Model: DeepRecInfra
• Run-time environment: Ubuntu 14.04
• Hardware: Cosmos+ OpenSSD, two Linux Desktop machines, re-
mote PDU

• Howmuch time is needed to prepareworkflow (approximately)?:
4-8 hours, once hardware is acquired

• Howmuch time is needed to complete experiments (approx-
imately)?: 10+ hours

• Publicly available?: Software will be open-sourced and publicly
available. Required hardware platform is potentially still purchasable
through original developers.

• Code licenses (if publicly available)?: GNU GPL

A.3 Description
A.3.1 How to access. RecSSD is provided through a number of
publically available GitHub repositories [7–9], as well as a publicly
available archive on Zenodo, DOI: 10.5281/zenodo.4321943.



ASPLOS ’21, April 19–23, 2021, Virtual, USA Wilkening, et al.

A.3.2 Hardware dependencies. Cosmos+ OpenSSD system [4], two
Linux Desktop class machines, and a remote PDU for a fully remote
workflow.

A.3.3 Software dependencies. Xilinx SDK 2014.4 for programming
the OpenSSD. The Cosmos+ OpenSSD FTL firmware and controller
Bitstream. Python3, PyTorch, and Caffe2 for running recommenda-
tion models.

A.3.4 Models. Uses recommendation model benchmarks from
DeepRecInfra [19], and trace generation from Facebook’s open-
sourced DLRM [30].

A.4 Installation
To set up the SSDDev machine, start by downloading the Cosmos+
OpenSSD software available on their GitHub[3]. You will need
to install Xilinx SDK 2014.4, and follow the instructions in their
tutorial[5] to set up a project for the OpenSSD board. For RecSSD,
we use the prebuilt bitstream and associated firmware. After setting
up the project, replace the ./GreedyFTL/src/ directory with the
code from the RecSSD-OpenSSDFirmware GitHub repository. The
OpenSSD tutorial contains detailed instructions on running the
firmware, and the physical setup of the hardware.

To set up the SSDHost machine, download and make the RecSSD-
UNVMeFirmware repository. This repository provides a user level
driver library to connect the RecSSD-RecInfra recommendation
models to the OpenSSD device. Once the SSDHost has been booted
with the OpenSSD running, use lspci to detect the PCIe device identi-
fier of the board, and use unvme-setup bind PCIEID to attach the dri-
ver to the specific device. Make note of ./test/unvme/libflashrec.so,
which must be later copied into RecSSD-RecInfra, such that the
Python3 runtime can load and run the necessary driver functions
to make use of our implemented NDP techniques.

Next, download the RecSSD-RecInfra repository. Copy the libflashrec.so
file into ./models/libflashrec.so. Make sure to download and install
Python3 and PyTorch[6].

A.5 Experiment workflow
Detailed walk-throughs of the technical steps required are docu-
mented within the provided individual repositories and from the
OpenSSD tutorial[5]. At a high level the expected workflow is as
follows.

(1) With the SSDHost machine powered off, use the Xilinx SDK
on the SSDDev machine to launch the FTL firmware on the
OpenSSD.

(2) Power on and boot the SSDHost machine. Connect the UN-
VMe driver library to the device through unvme-setup bind.

(3) Run /models/input/create_dist.sh within RecSSD-RecInfra
to generate the desired synthetic locality patterns for input
traces.

(4) Run the python based experimental sweeps scripts within
RecSSD-RecInfra /models/ to run various recommendation
models using either baseline SSD interfaces or our NDP
interfaces.

A.6 Evaluation and expected results
Most of our results are reported as inference latency, output from
scripts run on the SSDHost machine. We compare relative latency
results across a large number of batches in order to guarantee
regular steady state behavior. Figure 10 presents expected results
for the important RM1, RM2, and RM3 models, while Figure 11
presents results for an RM3-like model while tuning specific model
parameters.

Figure 8 reports breakdowns in time spent within the FTL for
NDP requests usingmicrobenchmarkswithin the RecSSD-UNVMeDriver
repository. To reproduce these results, run ./test/unvme/unvme_embed_test.
Unlike model latency results, these measurements are performed
within the FTL and directly reported through output to the SDK,
therefore they must be recorded from the SDK running on the
SSDDev machine.

Figures 3 and 4 use proprietary industry data and are not repro-
ducible using our open-sourced infrastructure.
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