Analytical Latency-Throughput Model of Future Power Constrained Multicore Processors

Amanda Chih-Ning Tseng and David Brooks Harvard University

WEED 2012 June 9th, 2012

For Today's Multicore Processors, the Trend Towards Maximizing Throughput Due to Power Constraint

Арр Туре	Office	Media Playback	Game	Web Browsing	Image	Video
Avg. TLP	1.2	1.5	1.6	2.0	2.1	7.4

* Blake et. al., Evolution of Thread-Level Parallelism in Desktop Applications, ISCA'10

- Most popular desktop and mobile applications benefit less from multicore processors
- Processor performance increased 22%/year for the past decade compared to the historical 52%**

** Hennessy and Patterson, Computer Architecture, A Quantitative Approach, Ed.5

To study the tradeoff, a model that analyzes the performance relation is necessary.

* Azizi et. al., Energy-Performance Tradeoffs in Processor Architecture and Circuit Design: A Marginal Cost Analysis, ISCA '10

Single Core Info

Thermal Design Power (TDP) :

Maximum power that the cooling system can dissipate Decided at design time

Architecture Type : Symmetric or asymmetric multicore (Currently implemented)

Related Works

- "Amdahl's Law in the Multicore Era," M. D. Hill and M. R. Marty, Computer, Jul. 2008
 - Augmenting Amdahl's low to examine theoretical speedups for symmetric, asymmetric, and dynamic multicore chips.
- "Dark Silicon and the End of Multicore Scaling," H. Esmaeilzadeh et. al., ISCA '11
 - Using technology scaling and performance model to predict speedup and % of dark silicon of future computing systems

Single Task: Symmetric Multicore

Amdahl's Law : Speedup = $\frac{1}{(1-F) + F/N}$

Single Task: Asymmetric Multicore

Amdahl's Law : Speedup = $\frac{1}{(1-F) + F/N}$

Power Constraint : S B $N_s = (TDP - P_B) / P_s$ S S S S Performance : $STP = STP_{B}$ THP (1-F) $STP_B + N_S \times STP_S$

Multi-Task Model

- Single Task Performance: Throughput performance for single task when using all cores
- Multi-Task Throughput Performance: Average time to finish a task when executing multiple tasks
- Resource Group:

One or more cores exclusively assigned to a particular task

Throughput Generalization

Multi-Task Symmetric Model

Multi-Task Asymmetric Model

Multi-Task Throughput v.s. Single Task Performance, F = 0.75

Takeaways

- Asymmetric design benefits more when power budget is higher
- Core configurations varied significantly for different performance metrics
- Almost every size of single cores is selected to form an optimized configuration

Conclusion

- For future processors, improving both single thread performance and throughput performance is significant
- We construct an analytical model that computes both type of performance under a power constraint for different multicore architecture
- Future work: considering overheads like cache sharing and NoC, extending the model for heterogeneous multi-task, and analyzing QoS metrics

Questions?