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ABSTRACT
Training deep learning models is compute-intensive and there
is an industry-wide trend towards hardware specialization to
improve performance. To systematically benchmark deep
learning platforms, we introduce ParaDnn, a parameterized
benchmark suite for deep learning that generates end-to-
end models for fully connected (FC), convolutional (CNN),
and recurrent (RNN) neural networks. Along with six real-
world models, we benchmark Google’s Cloud TPU v2/v3,
NVIDIA’s V100 GPU, and an Intel Skylake CPU platform.
We take a deep dive into TPU architecture, reveal its bottle-
necks, and highlight valuable lessons learned for future spe-
cialized system design. We also provide a thorough compari-
son of the platforms and find that each has unique strengths
for some types of models. Finally, we quantify the rapid
performance improvements that specialized software stacks
provide for the TPU and GPU platforms.

1. INTRODUCTION
Deep learning has revolutionized many application do-

mains, defeating world champions in the game of Go [49],
surpassing humans in image classification [28], and achieving
competitive accuracy to humans in speech recognition [4]
and language translation [57], to name a few. As such, there
has been growing demand for new and better hardware and
software platforms to support the training and deployment
of even more sophisticated models. As researchers from
both academia and industry scramble to propose and deploy
new systems to meet this demand, there is a great need to
concurrently develop a systematic and scientific approach
to platform benchmarking. This benchmarking should not
only compare performance of different platforms running a
broad range of deep learning models, but also support deeper
analysis of the interactions across the spectrum of different
model attributes (e.g., hyperparameters), hardware design
choices, and software support.

Announced in May 2017, the Tensor Processing Unit
(TPU) v2 is a custom ASIC. Each TPU v2 device deliv-
ers a peak of 180 TFLOPS on a single board. TPU v3 was
announced a year later and improves the peak performance
to 420 TFLOPS. Cloud TPU became available for early aca-
demic access in February 2018. It is used in this paper. The

NVIDIA Tesla V100 Tensor Core is a Graphics Processing
Unit (GPU) with the Volta architecture that was released in
2017. CPUs have been found to be suitable for training in
certain cases [20] and, therefore, are an important platform
to include for comparison. This study shows that no one
platform is best for all scenarios. Different platforms offer
advantages for different models based on their respective
characteristics. Moreover, given how rapidly deep learning
models evolve and change, benchmarking must be updated
continuously and run frequently.

Recent benchmarking efforts have been limited to rela-
tively small collections of seemingly arbitrary DNN mod-
els [41, 3, 12, 51]. Focusing on well-known models such as
ResNet50 [21] and Transformer [54] can lead to misleading
conclusions. For example, Transformer is a large FC model
that trains 3.5× faster on the TPU compared to the GPU;
yet focusing on this single model would not reveal the se-
vere TPU memory bandwidth bottleneck that arises with FCs
with more than 4k nodes. This highlights the risk of overly
optimizing hardware and/or compilers for certain models.

This paper proposes a collection of deep learning mod-
els (for training) created and curated to benchmark a set of
state-of-the-art deep learning platforms. In order to support
broad and comprehensive benchmark studies, we introduce
ParaDnn, a parameterized deep learning benchmark suite.
ParaDnn seamlessly generates thousands of parameterized
multi-layer models, comprising fully-connected models (FC),
convolutional neural networks (CNN), and recurrent neural
networks (RNN). ParaDnn allows systematic benchmarking
across almost six orders-of-magnitude of model parameter
size, exceeding the range of existing benchmarks.

We combine these parameterized models with a collection
of six real-world models, which serve as unique points within
a broad spectrum of model attributes, to provide comprehen-
sive benchmarking of hardware platforms. Table 1 summa-
rizes fourteen observations and insights described throughout
the paper that can inform future domain-specific architec-
ture, system, and software design. We specifically mark the
insights enabled by ParaDnn. We start with a deep dive
into the TPU v2 and v3 in Section 4, revealing architectural
bottlenecks in computation capability, memory bandwidth,
multi-chip overhead, and device-host balance (observations 1
through 5). Section 5 provides a comprehensive comparison
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Observation ParaDnn* Proof Insight/Explanation
1. TPU does not exploit the parallelism from the model depth (layer count). X Fig 2 To design/upgrade new specialized systems, architects
2. Many FC and CNN operations are bottlenecked by TPU memory bandwidth. X Fig 3 need to consider interactions between the operation
3. TPU suffers large overheads due to inter-chip communication bottlenecks. X Fig 4 mix from key workloads (arithmetic intensity) and
4. TPU performance can be improved by ≥ 34% by improving data infeed. - Fig 5 system configurations (FLOPS, memory bandwidth/
5. TPU v3 optimizes compute-bound MatMuls by 2.3×, memory-bound capacity, and intra-chip and host-device interconnect).

ones by 3×, and large embeddings by > 3×, compared to v2. X Fig 6 TPU serves as a great example.
6. The largest FC models prefer CPU due to memory constraints. X Fig 7 Need for model parallelism on GPU and TPU.
7. Models with large batch size prefer TPU. Fig 8 Large batches pack well on systolic arrays;

Those with small batch size prefer GPU. - Fig 10 warp scheduling is flexible for small batches.
8. Smaller FC models prefer TPU and larger FC models prefer GPU. X Fig 8 FC needs more memory bandwidth per core (GPU).
9. TPU speedup over GPU increases with larger CNNs. X Fig 10 TPU architecture is highly optimized for large CNNs.
10. TPU achieves 2× (CNN) and 3× (RNN) FLOPS utilization compared to GPU. X Fig 11 TPU is optimized for both CNN and RNN models.
11. GPU performance scales better with RNN embedding size than TPU. X Fig 10 GPU is more flexible to parallelize non-MatMuls.
12. Within seven months, the software stack specialized for TPU It is easier to optimize for certain models

improved by up to 2.5× (CNN), 7× (FC), and 9.7× (RNN). X Fig 12 than to benefit all models at once.
13. Quantization from 32 bits to 16 bits Fig 5 Smaller data types save memory traffic and enable

significantly improves TPU and GPU performance. - Fig 12 larger batch sizes, resulting in super-linear speedups.
14. TensorFlow and CUDA teams provide substantial performance There is huge potential to optimize compilers

improvements in each update. X Fig 12 even after the hardware has shipped.
* Without ParaDnn the insights are not revealed, and/or lack deep explanations.

Table 1: A summary of major observations and insights grouped by section of the paper.

of TPU and GPU performance, highlighting important dif-
ferences between the two platforms (observations 6 through
11). The final three observations are detailed in Section 6,
which explores the performance improvements of specialized
software stacks and quantized datatypes.

It is important to identify limitations of the study. This pa-
per highlights optimization opportunities in current architec-
ture and system designs, as they provide valuable lessons for
future design. Optimization details are beyond its scope. For
example, the analysis focuses on training and not inference.
We do not study the performance of multi-GPU platforms or
256-node TPU systems, which may lead to different conclu-
sions. Section 7 discusses these and other limitations of the
study, which also motivate future work.

2. DEEP LEARNING BENCHMARKING
Recent success of deep learning (DL) has motivated de-

velopment of benchmark suites, but existing suites have
limitations. There are two types, real-world benchmark
suites such as MLPerf [41], Fathom [3], BenchNN [12], and
BenchIP [51], and micro-benchmark suites, such as Deep-
Bench [43] and BenchIP. Each real-world suite contains a
handful of popular DL models spanning a variety of model
architectures. Their limitation is that they only contain to-
day’s deep learning models, which may become obsolete as
DL models evolve rapidly. Further, they fail to reveal deep in-
sights into interactions between DL model attributes and hard-
ware performance, since the benchmarks are sparse points in
the vast space of deep learning models. Micro-benchmark
suites exercise basic operations (e.g., matrix multiplication
or convolution) that are common in neural networks, but they
cannot simulate complex dependencies between different op-
erations in end-to-end models.

To complement existing benchmark suites for this study,
we introduce ParaDnn, a parameterized benchmark suite for
deep learning.1 ParaDnn has the advantages of the above

1We plan to open-source ParaDnn.

approaches, with the goal of providing large “end-to-end”
models covering current and future applications, and param-
eterizing the models to explore a much larger design space
of DNN model attributes. For example, a single end-to-end
CNN model from ParaDnn contains a mixture of many differ-
ent layers with different sizes of convolution, batch normal-
ization, pooling, and FC layers. The complexity of ParaDnn
workloads is comparable to that of real-world models (e.g.,
ResNet50 and Transformer), as will be shown in Figure 1.
Insights about hardware performance sensitivity to model
attributes allow interpolating and extrapolating to future mod-
els of interest. These insights could not be discovered with
either the small point space exploration of the real-world
benchmark suites or DeepBench’s microbenchmarks,which
do not capture inter-operation dependencies as ParaDnn does.

2.1 ParaDnn Models
ParaDnn includes end-to-end fully connected models (FC),

convolutional neural networks (CNN), and recurrent neural
networks (RNN). The model types cover 95% of Google’s
TPU workloads [32], all of Facebook’s deep learning mod-
els [20], and eight out of nine MLPerf models [41] (with
reinforcement (minigo) as an exception). The image classi-
fication/detection and sentiment analysis models are CNNs;
the recommendation and translation models are FCs; the
RNN translator and another version of sentiment analysis are
RNNs. Speech recognition (DeepSpeech2) is a combination
of CNN and GRU models.
Fully-Connected Models FC models comprise multiple fully-
connected layers. The architecture is

Input→ [Layer[Node]]→ Output,

where [Layer] means the number of layers is variable. We can
sweep the number of layers, the number of nodes per layer,
and the numbers of input and output units of the datasets.
Convolutional Neural Networks CNN models are residual
networks, the state-of-the-art model for image classification.

2



Variable Layer Nodes Input Output Batch Size
Min 4 32 2000 200 64
Max 128 8192 8000 1000 16384
Inc ×2 ×2 +2000 +200 ×2

(a) Fully Connected Models

Variable Block Filter Image Output Batch Size
Min 1 16 200 500 64
Max 8 32 300 1500 1024
Inc +1 64 +50 +500 ×2

(b) Conv. Neural Nets: Residual and Bottleneck Blocks

Variable Layer Embed Length Vocab Batch Size
Min 1 100 10 2 16
Max 13 900 90 1024 1024
Inc +4 +400 +40 ×4 ×4

(c) Recurrent Neural Networks: RNN, LSTM, GRU

Table 2: The ranges of the hyperparameters and dataset vari-
ables (italic) chosen in this paper.

The architecture of ParaDnn CNNs is

Input→ [Residual/Bottleneck Block]×4→ FC→ Output.

A residual network contains four groups of blocks [21]. Each
can be a residual block or a bottleneck block, followed by
a fully-connected layer. Residual blocks have two convo-
lutional layers and two batch normalization layers, while
bottleneck blocks have three of each. Usually the minimum
number of filters of a residual network is 64 and it doubles
in every group, so the maximum is 512 filters. We sweep
the number of blocks per group, the minimum filters, and the
datasets, including input images and number of categories
as outputs. An input image is square with three channels,
represented by its length. To keep the study tractable, we
constrain each group to have the same number of blocks.
Recurrent Neural Networks RNNs comprise multiple lay-
ers of basic RNN, LSTM, or GRU cells as shown below.

Input→ [RNN/LSTM/GRU Cell]→ Output.

Each token of the input sequence is embedded within a fixed
length vector, and the length of the vector is the embedding
size. In ParaDnn, the number of layers and the embedding
size are variable. The variables in the dataset include the
maximum length per input sequence and the vocabulary size.
Range of Hyperparameters and Datasets We choose the
range of hyperparameters and datasets to cover the real mod-
els (Section 2.2), and we make sure the design space is rea-
sonable. Table 2 summarizes variables for each network type
and how they are swept. We also sweep training batch sizes.

2.2 Real-World Models
In addition to ParaDnn, we include two of the three work-

loads written in TensorFlow from MLPerf [41], i.e., Trans-
former (translation) [54] and ResNet-50 (image classifica-
tion) [21], because currently TPU only supports TensorFlow.
We also select other real-world deep learning workloads [42],
including RetinaNet [37], DenseNet [28], MobileNet [27],
and SqueezeNet [29]. We refer to them as real workloads
or real models. The batch sizes are the largest supported on
the hardware platform. For example, on TPU with bfloat16,
we use batch size 64 for RetinaNet, 4k for Transformer, and
1024 for the rest of the workloads.

105 106 107 108

# Trainable Parameters

SqueezeNetMobileNetDenseNetResNet-50RetinaNetTransformerGRULSTMRNNBottleneckResidualFC

Figure 1: The numbers of trainable parameters for all work-
loads in this paper. Those from ParaDnn range from 10k to
nearly a billion parameters, which is larger the range of real
workload sizes, shown as dots.

Figure 1 shows the numbers of trainable parameters across
all workloads to quantify the size of the models. The ParaDnn
workloads are shown as ranges and the real workloads as
dots. ParaDnn covers a large range of models, from 10k
to nearly a billion parameters. Transformer is the largest
real FC, and RetinaNet is the largest real CNN. The small
models, SqueezeNet and MobileNet, reflect models typically
targeted towards mobile applications. RetinaNet and ResNet-
50 provide state-of-the-art image classification accuracy.

3. HARDWARE PLATFORMS
Our selection of hardware reflects the latest configurations

widely available in cloud platforms at paper submission time.
Platform specifications are summarized in Table 3.
CPU Platform The CPU is an n1-standard-32 instance from
Google Cloud Platform with Skylake architecture. It has 16
cores and 32 threads. It has the largest memory (120 GB) and
lowest peak flops (2 TFLOPS) among the three. GeekBench 4
produced the bandwidth measurement.
GPU Platform The GPU is an NVIDIA V100 in a DGX-1
GPU platform that contains 8 V100 packages (SXM2) con-
nected via 300 GB/s NVlink 2.0 interconnect. We currently
measure the performance of a single SXM2 node. One node
has 16 GB of memory and 900 GB/s memory bandwidth. A
V100 has 640 tensor cores and is able to run mixed precision
training using float16 to compute and float32 to accumulate,
making its peak performance 125 TFLOPS.
TPU Platform The TPU is a Cloud TPU instance to which
we were given academic access in February 2018. Its sys-
tem architecture includes a Cloud Engine VM, a Cloud TPU
server, Google Cloud storage, and a Cloud TPU board [2].
Each TPU board contains four TPU packages (the default
Cloud TPU configuration) [14]. One TPU v2 package sup-
ports 45 TFLOPS and contains 2 cores. One core has one
matrix unit (MXU). Total ML acceleration for a Cloud TPU
v2 platform is 180 TFLOPS. Memory size is 8 GB per core,
or 64 GB per board, with 2400 GB/s overall memory band-
width. TPU v2 supports mixed precision training, using
bfloat16 to compute and float32 to accumulate. Compared to
v2, TPU v3 doubles the number of MXUs and HMB capacity
per core [2]. The memory bandwidth has not been disclosed,
but empirical results show that it is increased by 1.5×. TPU
v3 has a peak of 420 TFLOPS, 2.3× greater than v2, likely
because of higher frequency. Because v3 is an upgrade from
v2, we focus on studying v2. In this paper, TPU refers to
Cloud TPU v2, unless specified otherwise.

Understanding TPU memory size. Data parallelism is im-
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Mem Mem Mem Bdw Peak
Platform Unit Version Type (GB) (GB/s) FLOPS

CPU 1 VM Skylake DDR4 120 16.6 2T SP†

GPU 1 V100
(DGX-1) Pkg (SXM2) HBM2 16 900 125T

1 Board
TPU (8 cores) v2 HBM 8 2400 180T

TPUv3 8 cores v3 HBM 16 3600* 420T
† Single precision: 2 FMA× 32 SP× 16 cores× 2G frequency = 2 SP TFLOPS
* Estimated based on empirical results (Section 4.5).

Table 3: Hardware platforms under study.

plemented on the TPU, where one batch of training data
is split evenly and sent to the 8 cores on the TPU board.
The model is not distributed; every TPU core keeps a whole
copy of it. Therefore memory size per core determines the
maximum model supported, while total on-board memory
determines the maximum data batch size. That is why in Sec-
tion 5.1, the GPU platform supports larger models than the
TPU, and the TPU supports larger batch sizes (Section 5.2).

Comparison rationale. We evaluate one V100 package
and one TPU board (4 packages) because they are the min-
imal units available. The configurations are encapsulated.
On Cloud TPU, distribution of computation across the four
TPU packages on a TPU board happens automatically. On
the other hand, multi-GPU performance depends largely on
the user’s implementation. Multi-GPU/TPU performance
is beyond the scope of this work as discussed in Section 7.
Therefore, note that conclusions in this paper do not apply to
multi-GPU or larger TPU systems.

4. TPU ARCHITECTURAL IMPLICATIONS
As the end of Dennard scaling and Moore’s law has slowed

the performance improvement of general-purpose micropro-
cessors [23], the design of domain-specific hardware is be-
coming more and more relevant. The TPU is a prominent ex-
ample of domain-specific hardware [32, 14]. Its development
was motivated by the observation that, with conventional
CPUs, Google would have had to double their datacenter
footprint to meet the internal demand for machine learning
workloads. Google has been using TPUs for their large-scale
production systems, including Search, Translate, and Gmail.
Analyzing the architecture of such systems can provide valu-
able insights into future deep learning accelerator design.

In this section, we study the performance characteristics
of TPU v2 and v3 [14, 2] with a focus on v2, from the
computation capability in the core (FLOPS) to the system
balance. Based on our observations, we discuss possible steps
to improve TPU performance, which can be generalized to
other deep learning accelerator systems. The following is a
summary of our key observations and insights:

• FLOPS (Section 4.1): TPU makes good use of the
parallelism exposed by batch size and model width,
but parallelism due to model depth is under-exploited,
suggesting opportunities for model pipelining [8].

• Memory bandwidth (Section 4.2): Memory bandwidth
is the performance bottleneck of many models. Even
highly-optimized compute-bound models show a sig-
nificant fraction of memory-bound operations (13% in
ResNet-50). Improving memory access for such opera-
tions is key to further performance improvement.

• Multi-chip overhead (Section 4.3): Communication
overhead in a multi-chip system is non-negligible (up
to 13% for CNNs with sizes similar to ResNet-50) but
can be amortized with large batch sizes. Reducing the
communication overhead can lead to performance gain.
• Host-device balance (Section 4.4): Data quantization

can make compute-bound workloads data-infeed-bound.
Resolving the data-infeed bottleneck can improve per-
formance by at least 34%.
• TPU v3 (Section 4.5): The maximum speedup of TPU

v3 over v2 is up to 3×, exceeding the 2.3× FLOPS
increase. TPU v3 benefited from its doubled memory
capacity (which allows twice the batch size of v2) as
well as increased memory bandwidth.

4.1 FLOPS Utilization
Floating point operations per second (FLOPS) utilization

is the ratio of average FLOPS to peak FLOPS, measuring
how efficiently the computation capacity of a platform is used.
We discuss the TPU FLOPS utilization of the parameterized
models in this section. We first visualize how the model
hyperparameters listed in Table 2 affect FLOPS utilization.
Then we introduce an analysis methodology to quantify the
hyperparameter effect using linear regression.
FLOPS Utilization Heat Maps Figure 2(a)–(c) presents
heat maps of FLOPS utilization for FC, CNN, and RNN mod-
els, obtained by sweeping the hyperparameters with ranges
listed in Table 2. We choose two hyperparameters for each
model type that affect FLOPS utilization the most (see below
for how we choose them) and show them on the x- and y-axes
while keeping the other hyperparameters fixed. Specifically,
we fix layer (32), input (2000), and output units (1000) for
FCs, block (6), input image size (300×300×3), and output
unit (1000) for CNNs, and layer (9), vocabulary size (32),
and max length (50) for RNNs.

Figures 2(a)–(c) show that the FLOPS utilization of all
three models increases with batch size. Other than that, the
FLOPS utilization of FCs increases with number of nodes
per layer (Figure 2(a)), that of CNNs increases with filters,
and that of RNNs with embedding size. This indicates that
TPU is capable of leveraging the parallelism within a batch
(the former) and within the width of the models (the latter).
Studying Parameterized Models with Linear Regression
Having discussed the qualitative effects of hyperparameters
on FLOPS utilization, we now build a linear regression (LR)
model and use the weights to quantify these effects. Note that
the LR model is only for measuring the effects of hyperpa-
rameters. We do not use it for prediction.

In the case of FC, the linear regression model is

FLOPS = w0× layer+w1×node +
w2× input+w3×output+w4×batch size,

where w0–w4 are the weights of the hyperparameters. To train
the LR model, all the values are normalized to the same scale,
so that we can use the weights as a measure of importance.
For example, positive w1 indicates that node count affects
performance positively. If the absolute value of w1 is larger
than that of w0, it indicates node count has a larger effect on
FLOPS than layer count. Other similar metrics for feature
selection, including T-test and F-test, may be used for this
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Figure 2: FLOPS utilization and its correlation with hyperpa-
rameters. (a)–(c) show FLOPS utilization of parameterized
models. (d)–(f) quantify effects of model hyperparameters
on FLOPS utilization, using linear regression weights.

purpose [26]. We choose LR mainly to get the signs of the
weights, which indicate the positive or negative effects of the
hyperparameters on performance, while T-test and F-test only
report positive values as importance.

Figures 2(d)–(f) show the LR weights of the model hy-
perparameters. The x- and y-axes in Figures 2(a)–(c) are
the hyperparameters with the highest absolute values in Fig-
ures 2(d)–(f). Figure 2(d) shows that the FLOPS utilization
of FC is largely affected by batch size and node, while layer,
output, and input do not matter as much. Similarly, Fig-
ure 2(e) shows filter is the most important, and batch size
is more important than block, while input and output have
minimal impact. The TPU FLOPS of RNNs is not affected
by maximum length, number of layers, or vocabulary size.
Architectural Implications The TPU takes advantage of par-
allelism due to large batch size and model width, including
that from nodes per layer in FC, filters in CNN, and em-
bedding sizes in RNN. Parallelism opportunities from large
numbers of layers remain to be explored, by approaches such
as model parallelism [15, 30] and pipelining [8].

4.2 Roofline Model Analysis
The FLOPS utilization in the previous section shows the

computation capability of TPU, but the core is only part of
the problem when designing an accelerator. In particular,
memory bandwidth is another important aspect that can have
significant impact on performance. In this section, we use the
roofline model [56] to analyze the computation and memory
bandwidth of FCs and CNNs. Roofline models are useful
to demonstrate memory and computation bottlenecks [56,
32]. We omit RNN models because the TPU profiler reports
incorrect numbers for memory bandwidth of RNN models.
The Roofline Model Figure 3 shows the roofline plots. The
y-axis is FLOPS and the x-axis is arithmetic intensity, i.e.,
floating-point operations per byte transferred from memory.
The roofline (the red line in Figure 3) has of a slanted part and
a horizontal part. It represents the highest achievable FLOPS
at a given arithmetic intensity. Any data point (x,y) on the
slanted part has x/y = memory bandwidth. The horizontal
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Figure 3: Rooflines for FC and CNN on TPU. Workloads
with matrix multiply (MatMul) operations are compute-
bound. Even compute-bound workloads like Transformer and
ResNet-50 have more than 10% memory-bound operations.
(a) and (c) show rooflines of parameterized and real-world
models. (b) and (d) show the operation breakdown.

part is the peak FLOPS on the hardware. A workload or
operation (a point in Figure 3) close to the slanted roofline is
memory-bound; one close to the horizontal part is compute-
bound. A workload or operation not close to the roofline
stresses neither memory interconnect nor compute units.

Figures 3(a) and 3(c) show all the parameterized FC and
CNN models (dots) plus Transformer and ResNet-50 (stars).
Figures 3(b) and 3(d) show all the operation breakdowns.
Transformer and ResNet-50 are just instances (sparse design
points) in ParaDnn, so the stars overlap some of the dots. This
is because ParaDnn enables more comprehensive model archi-
tecture design space exploration and supports benchmarking
hardware systems more systematically. An exception is that
some operations of Transformer do not align closely with
those of FCs. This results from a choice in this paper, not a
fundamental flaw of ParaDnn. ParaDnn uses the RMSProp
optimizer, keeping nodes per layer uniform in a parameter-
ized FC, while Transformer uses the adafactor optimizer and
has layers with 4k, 2k, and 512 nodes.
FC Figure 3(a) shows that large batch sizes make FCs more
compute-bound, and more nodes make FCs more memory-
bound. That is because FCs with more nodes need to transfer
more weights/activations from the memory, and large batch
sizes increase the computation per weight/activation trans-
ferred, i.e, the arithmetic intensity. For example, for FCs with
≥ 2k nodes, using large batch sizes turns memory-bound FCs
into compute-bound. Specifically, the FCs with ≥ 2k nodes
per layer and ≥ 8k batch size are compute-bound. Trans-
former is close to compute-bound and it uses 4k batch size,
which causes it to overlap with FCs having 4k batch sizes.
CNN Figure 3(c) shows that models close to ResNet-50 are
compute-bound, while a majority of the CNNs are bottle-
necked by memory bandwidth. As it is in log scale, it shows
that practically achievable memory bandwidth for the CNNs
is less than the theoretical bandwidth. The CNNs’ higher
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FLOPS comes from higher arithmetic intensity caused by
more filters. When memory bandwidth is the bottleneck, the
way to increase FLOPS is to increase arithmetic intensity.
Operation Breakdown The triangles in Figures 3(a) and 3(c)
are selected memory-bound models. The FC has 8 layers,
8192 nodes per layer, and batch size 512; the CNN has 1 block
per group, 16 filters, and batch size 64. Figures 3(b) and 3(d)
show the TensorFlow operations taking more than 1% of
the workload execution time and more than 0 TPU FLOPS.
The arithmetic intensity of such operations can be as low as
0.125.2 The TensorFlow breakdown in Figure 3 is generated
after operation fusion, which is a technique combining and
executing several operations together for higher efficiency.
Large MatMuls Figures 3(b) and 3(d) show that the only
compute-bound operation is large fused MatMul (matrix mul-
tiply fused with other operations), so a compute-bound model
needs to have compute-bound MatMuls. Other operations
are closer to the slanted line, indicating they are constrained
by memory bandwidth. For example, in Figure 3(a) and (c),
Transformer and ResNet-50 are compute-bound because they
have compute-bound MatMuls in Figures 3(b) and 3(d).
Memory-bound Operations Interestingly, even compute-
bound FC/CNN models contain a noticeable fraction of memory-
bound operations. Transformer has three memory-bound op-
erations: (1) input fusion (9.0%), which includes multiply,
subtract, and reduce; (2) loop fusion (7.0%), which con-
sists of control flow operations (e.g., select and equal-to);
and (3) CrossReplicaSum (3.9%), which sums up the values
across multiple weight replicas. These three operations con-
tribute to 19.9% of the total execution time. (12.3% of the
execution time is for data formatting, which has no arithmetic
intensity or TPU FLOPS.) Even compute-bound ResNet-50
has many memory-bound operations, including loop fusion
(9%), MaxPoolGrad (2.9%), and CrossReplicaSum (1.1%),
which sums to 13%, showing the need for both end-to-end
and per-operation optimization for deep learning accelerators.
Architectural Implications Compute-bound FCs and CNNs
have large MatMul operations. Surprisingly, even compute-
bound models contain non-negligible fractions (19.9% for
Transformer and 13% for ResNet-50) of memory-bound op-
erations. Given the current TPU system, memory-bound
operations need more attention. Potential ways to speed up
memory-bound operations include increasing memory band-
width and reducing memory traffic. Traditional architectural
efforts to reduce memory traffic can be adopted, such as
exploiting the memory locality by caching [24]. Software/-
compiler approaches include better operation fusion [1, 11,
44], more aggressive data quantization [6], and weights and
gradients compression [17, 38].

4.3 Multi-Chip Overhead
This section analyzes communication overhead in a multi-

chip system. Previous sections focus on the compute and
memory bandwidth of a TPU core. But these are not the
only factors that affect training performance, because typical
large-scale training systems use multiple chips [15]. This

2For example, an activation accumulation operation (CrossReplica-
Sum in TensorFlow) uses float32 even with bfloat16 model weights.
In this case, the arithmetic intensity is 1/(2×4 bytes) = 0.125, i.e.,
one floating point addition for every two data points loaded.
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Figure 4: Communication overhead in a multi-chip system is
non-negligible, but is reduced with large batch sizes.

section evaluates the scalability of a multi-chip TPU system.
To quantify the multi-chip overhead, we compare the FLOPS

utilization of 1-core (x-axis) and 8-core TPU (y-axis) in Fig-
ure 4. If there were no multi-chip overhead, FLOPS utiliza-
tion of 1-core and 8-core should be the same, i.e., all points
should lie on the dashed line in Figure 4 showing x = y. On
the 8-core TPU, FCs need at least 16k batch size to achieve
more than 50% FLOPS utilization. Specifically, FCs with
≥ 256 nodes and ≤ 512 batch size are faster to run on 1-core
TPU than on 8-core TPU. Therefore we consider FCs with
larger than 1024 batch size in Figure 4.

As shown in the figure, 8-core TPU shows noticeably lower
FLOPS utilization than 1-core TPU, indicating significant
inter-core communication overhead. For FC, the maximum
FLOPS utilization in 8-core TPU is 62%, compared to 100%
in 1-core TPU. Multi-chip overhead is less noticeable in
CNNs, with FLOPS utilization decreasing from 55% in 1-
core TPU to 40% in 8-core. It is worse for FCs because there
are more weights to synchronize across the TPU cores than
for CNNs. Based on Amdahl’s law, we calculate that the
maximum non-parallel fraction of the workloads is up to 60%
for FC and 40% for CNN. The FLOPS utilization difference
is smaller with larger batch sizes for both FC and CNN,
because it increases the computation without increasing the
weight synchronization. Using the largest batch size shown
in Figure 4, the 90th-percentile of non-parallel fractions are
16% for FC and 8.8% for CNN.
Architectural Implications We show that communication
overhead in multi-chip systems is non-negligible even for
large FCs and CNNs. Using large batch size can reduce the
overhead by increasing the computation parallelism without
increasing weight transfers. Possible optimizations include
relaxed synchronization, model parallelism [15], gradient
compression [38], and algorithm and architecture support for
weight pruning and compression [17] before synchronization.

4.4 Host-Device Balance
Previous subsections have focused on the performance of

the accelerator itself. This section focuses on “data infeed,”
the process of preparing and moving input data to the TPU
board. ParaDnn analysis avoids part of the data infeed over-
head by synthesizing data on the CPU host. We now describe
a case study with real-world workloads to show the impor-
tance of balancing accelerators and the host in a system.
TPU Device and Host The TPU system is composed of a
CPU host and a TPU device [14]. For real-world CNNs, the
host fetches images from the network, decodes, preprocesses,
and feeds them to the device. Figure 5 calls this data prepara-
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Figure 5: FLOPS utilization (top) and infeed time (bottom) of
the real models using float32 and bfloat16, with and without
data preparation. Models with large infeed time percentage,
i.e., RetinaNet and SqueezeNet, are limited by data infeed.

tion. The device then performs training computation on the
images. Data infeed means network overhead, host compute,
and bandwidth between host and device.
Infeed Overhead Analysis To quantify the infeed overhead,
we run real-world workloads both with and without data
preparation, by directly feeding synthetic data as postpro-
cessed inputs. We also compare models using float32 to
those with bfloat16, because replacing float32 with bfloat16
can affect the execution time of both data infeed and device
computation. First, the arithmetic intensity of all operations
doubles, because the same computation can be performed
with half of the bytes transferred. Second, the FLOPS of
memory-bound operations improves in the device, because
increased arithmetic intensity moves those operations towards
the upper right in the roofline model of Figure 3. Third, im-
proved device performance increases the need for faster data
infeeding, which puts more pressure on the host.

Figure 5 shows FLOPS utilization and infeed time of the
real-world workloads. FLOPS utilization measures computa-
tion efficiency and infeed time measures how long the device
waits for data, both of which are collected from the TPU
profiler. The error bars are one standard deviation of the
one-minute samples from the profiler.

The figure shows that the bottleneck of a workload can
be on the device or in data infeed by different degrees under
different circumstances. Data infeed bottlenecks RetinaNet
and SqueezeNet, as the performance increases noticeably
when data preparation is skipped. Eliminating that bottleneck
brings 37% and 180% speedup, respectively, for RetinaNet
and SqueezeNet using bfloat16. RetinaNet’s bottleneck is
likely because it uses the COCO dataset (640×640 images),
while others use the ImageNet dataset (224×224 images).

ResNet-50 is bottlenecked by the device when using float32,
and by data infeed when using bfloat16. That bitwidth re-
duction speeds device execution and increases FLOPS uti-
lization so that training throughput on the device surpasses
data preparation throughput on the host. If the resulting
data infeed bottleneck can be resolved, the performance of
bfloat16 ResNet-50 can be improved by 34%. Switching Reti-
naNet and SqueezeNet from float32 to bfloat16 with real data
slightly increases the data infeed percentage as well for simi-
lar reasons. It also shows that performance can be improved
when infeed time increases.

DenseNet and MobileNet have zero data infeed time. Com-
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Figure 6: (a) Speedup of TPU v3 over v2 running end-to-end
models. (b) and (c) Speedup comparison for FC and CNN
operations. TPU v3’s larger memory supports doubled batch
sizes, so memory-bound operations have triple speedup if
they benefit from larger batch size, and 1.5× speedup if not.
Compute-bound on v3 operations have 2.3× the speedup.
The red line (75 Ops/Byte) is the inflection point in the TPU
v2 roofline. (See roofline and legends in Fig 3.)

pared with ResNet, they train fewer images/second, putting
less stress on the host to infeed data. Switching from float32
to bfloat16 increases the performance of both workloads us-
ing real data. Thus they are likely bottlenecked by memory
bandwidth in the device.

Unlike CNNs, Transformer processes sequences, which
are smaller than images and demand minimal computation
for data decoding and/or preprocessing. So Transformer does
not have significant infeed time, as expected. Unfortunately,
its tensor2tensor implementation does not support synthetic
data, so we omit the shaded bars for Transformer in Figure 5.
Architectural Implications Scaling performance of the CPU
host to match the TPU device is crucial for utilization of the
accelerator’s computation resource. For workloads limited
by data infeed from the host to the device, resolving the
bottleneck can improve performance by at least 34%. Such
workloads include RetinaNet, ResNet-50, and SqueezeNet
using bfloat16. Sequence models such as Transformer do not
stress data infeed as much as CNNs. By increasing FLOPS
utilization, data quantization can turn a compute-bound work-
load into one that is infeed-starved. With a powerful CPU
host, further data quantization can yield greater performance
gain, if it is valid. 8-bit training is an example [6].

4.5 TPU v3
This section focuses on the differences between TPU v2

and v3. Figure 6 compares TPU v3 and v2 using FC, CNN
with bottleneck block, and basic RNN models. Batch size for
v3 is twice that for v2, thanks to its doubled memory capac-
ity. Figure 6(a) shows the speedups of end-to-end ParaDnn
models. Because end-to-end model speedup depends on oper-
ations, we first discuss the operation breakdown in detail. Fig-
ure 6(b)–(c) show arithmetic intensity on the x-axis and the
speedup of FC and CNN operations on the y-axis. Data points
are colored by operation types, consistently with Figure 3(b)
and (d). As a reference, the red dashed line is the inflection
point in the TPU v2 roofline from Figure 3, where arithmetic
intensity is 75 Ops/Byte (180 TFLOPS / 2.4 TB/s). The op-
erations on the left of the red line are memory-bound, and
the ones on the right are compute-bound. We can group the
operations in four classes, as follows.
Compute-Bound Ops The peak FLOPS of TPU v3 is 2.3×
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that of v2, so compute-bound operations are improved by
about 2.3× on v3. Such operations are on the right of the red
dashed line in Figure 6(b).
Memory-Bound Ops (2× batch size) The maximum speedup
of the memory-bound operations (mainly the MatMuls in
Figure 6(b)–(c)) is 3×. The tripled speedup comes from
doubled batch size (enabled by doubled memory capacity)
and memory bandwidth improvement. Thus we can infer v3
has 1.5× bandwidth improvement (3.6 TB/s per board) over
v2, although its memory bandwidth has not been officially
disclosed. This is because on the slanted line of a roofline
model, doubled batch size means doubled arithmetic inten-
sity, and thus doubled FLOPS, because the ratio of FLOPS
to arithmetic intensity is fixed. And switching from v2’s
roofline to v3’s gives a FLOPS improvement equal to the
bandwidth improvement. The fact that the overall speedup is
3× indicates that the bandwidth improvement is 3/2 = 1.5×.
Other Memory-Bound Ops The 1.5× bandwidth improve-
ment assumption is corroborated by the 1.5× speedup of other
memory-bound operations, represented by the non-MatMul
FC operations in the lower left corner of Figure 6(b). The
performance of those operations does not increase with larger
batch size, as shown by the vertical alignment of each op-
eration type in Figure 3(b). Thus the 1.5× performance
improvement in Figure 6(b) is from bandwidth improvement.
Boundary Cases The compute-bound MatMuls in Figure 6(c)
become memory-bound on TPU v3, so the speedup is <
2.3×. Such operations have arithmetic intensity between
75 and 117, because the roofline inflection point of v3 is at
x = 420/(2.4∗1.5) = 117. CrossReplicaSum (yellow dots)
is slowed down on TPU v3, which may be because of more
replicas across more MXUs.
End-to-End Models In Figure 6(a) the maximum speedups
are 2.83× (FC), 2.31×(CNN), and 3.11×(RNN). Speedup
increases with model width (second column of Table 2), and
the maximum speedup is achieved by the largest width. FCs
with close to 3× speedup are dominated by memory-bound
MatMuls. Exceptions are RNNs with more than 3×,; these
have the largest embedding size (900), indicating that TPU
v3 optimizes large embedding computations.
Architectural Implications ParaDnn enables users to exam
a wide range of workloads, from memory-bound to compute-
bound. Compared to v2, TPU v3 shows three main levels
of speedup: 2.3× for compute-bound operations, 3× for
memory-bound MatMuls, and 1.5× for other memory-bound
operations. This is the result of its 2.3× FLOPS, 2× memory
capacity, and 1.5× memory bandwidth. For architects, the
relative improvement of FLOPS and memory is a trade-off
based on key workloads and budgets.

5. CROSS-PLATFORM COMPARISON
In this section, we conduct cross-platform comparison

using TPU, GPU, and CPU, so that users can choose the most
suitable platform based on models of interest. We find that
there are scenarios where each of the platforms is valuable,
trading off flexibility and specialization. We also discuss the
implications for future architecture designs. The following is
a summary of the key takeaways:

• TPU is highly-optimized for large batches and CNNs,
and has the highest training throughput.
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Figure 7: Examples/second of fully-connected models with
fixed layer (64). Examples/second decreases with nodes and
increases with batch size. White squares indicate models that
encounter out-of-memory issues. The CPU platform runs the
largest model because of its large memory.
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Figure 8: Small FC models with large batch sizes prefer TPU,
and large models with small batch sizes prefer GPU, indi-
cating systolic arrays are better with large matrices, and the
warp scheduling on GPU is more flexible for small matrices.

• GPU shows better flexibility and programmability for
irregular computations, such as small batches and non-
MatMul computations. The training of large FC models
also benefits from its sophisticated memory system and
higher bandwidth.
• CPU has the best programmability, so it achieves the

highest FLOPS utilization for RNNs, and it supports
the largest model because of large memory capacity.

We consider two performance metrics, examples/second
and speedup. Examples/second measures the number of ex-
amples trained per second, which is throughput. We use it
as a proxy for end-to-end performance. The speedup of one
platform over another is the ratio of the former’s performance
(examples/second) over the latter’s.

5.1 Fully-Connected DNNs
This subsection provides systematic analysis of the perfor-

mance and speedups for fully-connected (FC) models.
Examples/second Figure 7 shows throughput for varying
node counts and batch sizes but fixed layer count (64). We
use LR weights introduced in Section 4.1 to quantify the hy-
perparameter effects (not shown owing to space limitations).
Layer and node counts have negative weights, because it is
time consuming to train large models with many layers and
nodes. Batch size greatly improves examples/second on GPU
and TPU, but not CPU, because the parallelism available with
small batch sizes is enough to highly utilize CPU.

It is interesting to note that only the CPU supports the
largest models, and the GPU supports larger models than the
TPU. This is because every hardware core keeps one copy of
the model, so the largest model supported is determined by
memory per core, as explained in Section 3. In Figure 7, the
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white squares indicate models that encounter out-of-memory
(OOM) issues. CPU has the highest memory per core (120
GB), and GPU (16 GB) is higher than TPU (8 GB). While
TPUs and GPUs may draw more attention, as of today the
only choice for extremely large models is the CPU, which
supports all model sizes. For example, Facebook reports
using dual-socket, high-memory CPU servers to train ranking
models for News Feed and to perform anomaly detection
(Sigma), both of which are fully-connected networks [20].
That fact emphasizes the need for model parallelism and
pipelining [15, 30, 8] on GPU and TPU, such that those
powerful accelerators can support larger models.
TPU over GPU Speedup To further investigate the best hard-
ware platform for an FC model, we analyze TPU over GPU
speedups. Figure 8(a) plots the linear regression weights
across FC hyperparameters for TPU over GPU speedup. To
show the design space of FC models, Figures 8(b)–8(c) are
scatter plots showing numbers of model parameters on the
x axis and speedups on the y axis. To display the effects of the
hyperparameters, we color code data points to reflect batch
size (Figure 8(b)) and node count (Figure 8(c)). Overall, 62%
of the FC models perform better on TPU (speedup > 1).

TPU is well suited for large batch training, because systolic
arrays are very good at increasing throughput [35]. The posi-
tive weight in Figure 8(a) and the horizontal color bands in
Figure 8(b) show that large batch size is the key to higher TPU
over GPU speedup. This suggests that the matrix multiply
units (MXU) of TPU, implemented with systolic arrays [32,
14], need large batches to reach full utilization. But GPU is a
better choice for small batch sizes, because it executes com-
putation in warps, so it packs small batches and schedules
them on stream multiprocessors more easily [39].

GPU is a better choice for large models and datasets,
suggesting that it is more optimized for large FC memory
reuse/streaming requirements. Large models and datasets
lower speedups, shown by the negative weights of node count,
layer count, and input in Figure 8(a) and the scatter plot Fig-
ure 8(c), corroborated by the overall negatively-correlated
trend of speedup with number of parameters in Figure 8. FC
models have minimal weight reuse and large models have
more weights, so they put a lot of pressure on the memory
system. GPU has a more mature memory system and higher
memory bandwidth than TPU, which makes GPU better-
suited for the memory requirements of large FC models.
GPU over CPU Speedup The speedup of GPU over CPU
is an interesting comparison to TPU over GPU. Figure 9(a)
shows the LR weights from learning GPU-over-CPU speedup.
Figure 9(b) shows the design space colored by node count .

GPU is a better platform for large FC models, because
its architecture is better at exploiting the extra parallelism
from large batches and models. As shown by Figure 9, large
models have higher speedups on GPU. We also observe that
large FC models prefer GPU over TPU, witnessed by the
positive trend in Figure 9(b) and the negative trend in Fig-
ures 8(b)–8(c). So GPU is the best platform for large FC
models, but models with large batch sizes perform best on
TPU, and better on GPU than on CPU.

5.2 CNN and RNN
We now describe the speedup of CNNs and RNNs. Since
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Figure 9: Large FC models with large batch sizes are better
suited for GPU than CPU because the GPU’s architecture can
better utilize the extra parallelism.

our conclusions for CPUs and the hyperparameter LR weights
on examples/second are similar to those in the previous sec-
tion, we omit those results in the interest of brevity.
CNN Figures 10(a)–10(c) show the speedups of TPU over
GPU. All CNNs perform better on TPU. Batch size is still
the key to better TPU over GPU speedup for CNNs, shown
by its positive LR weight in Figure 10(a) and the increasing
speedup with batch size in Figure 10(b).

TPU is the best platform for large CNNs, suggesting that
the TPU architecture is highly optimized for the spatial reuse
characteristics of CNNs. This is shown by the positive
weights in Figures 10(a) and 10(c), where models with more
filters and blocks have higher speedups. It is different from
Section 5.1, showing that TPU is not preferred for large
FCs. This suggests it is easier for TPU to optimize for large
CNNs than large FCs, which may be because CNNs reuse
weights. FC models barely reuse weights, which introduces
more memory traffic. GPU is a feasible choice for small
CNNs. These conclusions only apply to single-GPU perfor-
mance; the multi-GPU case may be different.
RNN Figures 10(d)–10(e) show the speedup of TPU over
GPU. We display the embedding size in Figure 10(e), be-
cause the magnitude of its weight is greatest in Figure 10(d).
Embedding size has negative weights in Figure 10(d) and
embedding computation is more sparse than matrix multi-
plication. This suggests that TPU is less flexible for doing
non-MatMul computations than GPU. TPU is better at dense
computations like MatMuls. Even so, RNNs are still up to
20× faster on TPU. Optimizing non-MatMul computations
is another opportunity for TPU enhancement.

5.3 Overall Comparison
This section summarizes the speedup of TPU over GPU

and the FLOPS utilization of all parameterized and real mod-
els. We do not show the results of using CPUs to train CNNs,
because it is extremely time consuming and unlikely to con-
tribute additional insights.
TPU over GPU Speedup Figure 11(top) summarizes the
TPU over GPU speedups of all models. Note that the real
workloads use larger batch sizes on TPU than on GPU. Speedup
of TPU over GPU depends heavily on the nature of the
workload measured. The speedup of parameterized mod-
els has large ranges, from less than 1 to 10×, while the
speedup of real workloads range from 3× (DenseNet) to 6.8×
(SqueezeNet). ParaDnn represents a more complete view of
potential workloads, and each real workload represents the
concerns of certain users. Benchmarking platforms with two
kinds of workloads offer a more systematic understanding of
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Figure 10: (a)–(c) TPU is a better choice than GPU for large
CNNs, suggesting that TPU is highly-optimized for CNNs.
(d)–(e) While TPU is a better choice for RNNs, it is not as
flexible as GPU for embedding computations.

their behavior than those with only one kind.
To further compare TPU and GPU while relaxing the con-

straint on the software stack of the GPU, we also include the
speedup relative to GPU performance of ResNet-50, reported
in NVIDIA’s Developer Blog [9] (annotated as NVIDIA in
Figure 11(top)). We note that NVIDIA’s version of ResNet-
50 uses unreleased libraries, and we were unable to reproduce
the results. The speedup using ResNet-50 from Google is
6.2× compared to 4.2×, which suggests software optimiza-
tion can significantly impact performance.
FLOPS Utilization Figure 11(bottom) shows the FLOPS
utilization of all workloads and platforms. On average, the
maximum FLOPS utilization of TPU is 2.2× that of GPU for
all CNN models, and the ratio is 3× for RNNs. The TPU
FLOPS utilization of Transformers is consistent with FCs
with 4k batch size, as shown in Figure 2.

For RNNs, TPU has less than 26% FLOPS utilization and
GPU has less than 9%. In contrast, CPU has up to 46%
utilization. RNNs have irregular computations compared to
FCs and CNNs, due to the temporal dependency in the cells
and the variable-length input sequences. The parameterized
RNNs are very basic, however. Advanced RNN optimizations
may be able to increase utilization on GPU and TPU.

ResNet-50 and RetinaNet have higher FLOPS utilization
than DenseNet and SqueezeNet. The real workloads are
ranked by number of trainable parameters, shown in Fig-
ure 1. DenseNet has lower utilization because it has fewer
filters than ResNet-50. DenseNet’s maximum number of fil-
ters is 24 [28], and the minimum of ResNet-50 is 64 [21].
SqueezeNet is designed specifically to have fewer parameters
with the use of 1x1 filters [29]. Therefore, parallel operations
represent a smaller portion of the whole workload. As a con-
sequence of Amdahl’s law, the small models are unable to
utilize the parallelism available on GPU or TPU.

ResNet-50 has higher FLOPS utilization than CNNs with
bottleneck blocks. This is because the parameterized CNNs
keep the number of blocks the same in each group, while
ResNet-50 has more blocks in groups with more filters, and
that increases FLOPS.
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Figure 11: (Top) TPU over GPU speedups of all workloads.
Note that the real workloads use larger batch sizes on TPU
than on GPU. The NVIDIA version of ResNet-50 is from [9].
(Bottom) FLOPS utilization comparison for all platforms.

6. SOFTWARE STACK ADVANCES
Custom hardware for deep learning opens opportunities

for dramatic library, toolkit, and compiler optimizations. We
now describe how different versions of TensorFlow (TF) and
CUDA affect performance. We study data type quantization
with software versions, because it depends on software sup-
port. As a reminder, for all results in the previous sections,
we use the latest versions of each software stack with 16-bit
quantization support. Software versions are summarized in
the legends of Figure 12. ParaDnn can reveal software opti-
mization focus (e.g., TF 1.9 optimizes small-batch CNNs);
we omit these details for brevity.

6.1 TensorFlow Versions and TPU Performance
The compiler for the TPU is XLA [36], shipped with TF.

Figure 12(a) shows TPU speedups obtained by running TF
1.7 to 1.12, treating 1.7 with float32 as the baseline. The
speedup is per model, maximizing batch size in each setting.
For example, using bfloat16 instead of float32 allows larger
batch size and thus higher speedup.3 Moving from TF 1.7 to
1.12 improves performance for all ParaDnn models. Although
FC and CNN encounter performance regression with TF 1.8,
TF 1.9 fixes this anomaly and improves overall performance.

RNN performance is not improved much until TF 1.11. TF
1.11 shows 10× speedup for RNN and 7.5× for LSTM and
GRU. Transformer, ResNet-50, and RetinaNet are improved
continuously over TF updates. Interestingly, SqueezeNet is
improved starting from TF 1.11, while the performance of
DenseNet and MobileNet see little benefit.

In the 7 months (222 days) between the release of TF
1.7.0 (03/29/2018) and that of TF 1.12.0 (11/05/2018), soft-
ware stack performance improved significantly. The 90th-
percentile speedup of TPU is 7× for FC, 1.5× for Residual
CNN, 2.5× for Bottleneck CNN, 9.7× for RNN, and 6.3×
for LSTM and GRU.

The use of bfloat16 enables significant performance im-
provement for parameterized FC and CNN models. 90th-
percentile speedups are up to 1.8× for FC and Bottleneck
CNN, and 1.3× for Residual CNN. Depending on the rela-
tive memory sizes of the data and model, TPU can usually

3These experiments do not consider the impact of quantization on
model accuracy.
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Figure 12: (a) TPU performance with TensorFlow updates.
All ParaDnn models improve; Transformer, RetinaNet, and
ResNet-50 improve steadily. (b) GPU speedups across ver-
sions of CUDA and TF. CUDA 9.2 improves CNNs more than
other ParaDnn models, and ResNet-50 more than other real
models. CUDA 10 does not improve RNNs or SqueezeNet.

support doubled batch sizes by using 16 bits. Transmitting
16 bits also relieves bandwidth pressure, which can speedup
memory-bound operations as discussed in Section 4.2 and
Section 4.4. Larger performance increases may be possible
with further reductions in bitwidth.

6.2 CUDA Versions and GPU Performance
Figure 12(b) shows GPU performance across versions of

CUDA and TF. The baseline is TF 1.7 and CUDA 9.0 with
float32. TF 1.8 does not improve GPU performance. By low-
ering memory traffic and enabling larger batch sizes, bitwidth
reduction can speed up CNNs by more than 2×.

We note that CUDA 9.2 speeds up ResNet-50 significantly
more (8%) than other real workloads (< 1%). CUDA 9.2 also
speeds up ParaDnn CNNs more than FCs or RNNs. CUDA
10 speeds up other models, but not SqueezeNet. CUDA 10
also improves speedups for ParaDnn FCs and CNNs, but not
as much for RNNs. The overall 90th-percentile improvement
for FCs is 5.2×. For ParaDnn residual block and bottleneck
block models it is 2.9× and 2.6×, respectively. In contrast,
the 90-percentile improvement of parameterized models is
8.6% for RNN, 3.5% for LSTM, and 5.9% for GRU. The
improvement from CUDA updates is less than that for TF
updates on TPU, likely because CUDA and GPU platforms
have matured greatly since becoming popular before 2010,
while TPU v2 for training was only announced in May 2017.

7. LIMITATIONS OF THIS WORK
Scope of this Work This work does not study DL inference,
cloud overhead, multi-node systems, accuracy, or conver-
gence. We intentionally leave these topics to future work, as
each deserves in-depth study. For example, evaluating infer-
ence entails different metrics, such as latency, and a different
experimental setup, as network overhead may have a large
effect. Section 4.4 provides insight towards quantifying the
network overhead, and we use synthetic data to minimize the
cloud overhead, but virtualization, resource allocation, and
job scheduling bring up more research questions.

NVIDIA’s eight-node DGX-1 or Google’s 256-TPU sys-
tems are not studied here. Studying multi-node systems in-

volves more system parameters, including numbers of nodes,
inter-node bandwidth, inter-connect topology, and synchro-
nization mechanisms. Cloud system overhead also becomes
more acute in multi-node systems.

The validity of extrapolating training throughput to time-
to-accuracy remains an open question. Recent work studied
the number of training steps to accuracy as a function of
batch sizes [47]. It shows that very large batch size results
in sub-linear scaling, but the best batch size depends largely
on the model and optimizer. In a multi-node system, syn-
chronization becomes more complicated, which results in
different convergence behavior.
Tractability To keep the experiments tractable, we constrain
the parameters in this work, including the ParaDnn hyperpa-
rameters (Table 2) and the TPU iterations. For example, we
focus on large batches, as the platforms were designed for
large batch training, and extremely small batches may lead to
different conclusions. We use the RMSProp optimizer, and
SGD with momentum performs faster than RMSProp.

8. RELATED WORK
Benchmarks: “For better or worse, benchmarks shape a
field,” said David Patterson [40]. Indeed, benchmarks have
been the driving force for compiler and architecture design for
decades, and notable examples include the SPEC CPU [25]
and PARSEC multiprocessor benchmarks [7]. Recently, work
has focused on domain-specific benchmark suites including
CortexSuite [52], TonicSuite [18], Sirius [19], Fathom [3],
DAWNBench [13], and MLPerf [41]. It is impossible to
make any performance conclusions without benchmarks.

Benchmark designers must take care to avoid bias. Exist-
ing benchmark suites come with limitations as discussed in
Section 2. ParaDnn is the first parameterized benchmark suite
for deep learning in the literature. In the same spirit as param-
eterized benchmarks, synthetic benchmarks have commonly
been used, such as BenchMaker [31], and SYMPO [16],
constructing benchmarks with hardware-independent char-
acteristics. Some try to match the statistical characteristics
of real applications [55, 33]. Synthetic approaches are com-
mon in domain-specific benchmarking, e.g., CAD [53, 50],
statistical network inference [46], and database [45].
Benchmarking Our use of deep learning models to compare
up-to-date platforms, Google’s TPU v2/v3 and NVIDIA’s
V100 GPU, distinguishes this work from previous cross-
platform comparisons. Shi et al. compare CPU (Intel i7-
3820 and E5-2630v3) and GPU (GTX 980, GTX 1080, and
K80) platforms and deep learning frameworks [48]. Bahram-
pour et al. compare deep learning frameworks [5]. Others
compare cloud computing providers [34], heterogeneous plat-
forms [10], and cloud support for HPC [22].

9. CONCLUSION
This paper provides a comprehensive benchmarking analy-

sis of deep neural network training hardware and software,
and valuable lessons learned for future system designs. We
present architectural bottlenecks of the TPU platform and pro-
vide suggestions for future improvement. Using ParaDnn, our
parameterized benchmark suite for end-to-end deep learning,
along with six real-world models, we compare the hardware
and software of the TPU, GPU, and CPU platforms. We
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present several new observations and insights into the design
of specialized hardware and software for deep learning and
motivate the need for further work in this field.
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