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ABSTRACT

Battery-powered embedded systems require low energy usage to
extend system lifetime. These systems must power many compo-
nents for long periods of time and are particularly sensitive to en-
ergy use. Recent techniques for reducing energy consumption in
wireless sensor networks, such as aggregation, require additional
computation to reduce energy intensive radio transmissions. Larger
demands on the processor will require more computational energy,
but traditional energy reduction approaches, such as multi-core scal-
ing with reduced frequency and voltage may prove heavy handed
and ineffective for motes (sensor network nodes). Alternatively,
application-specific hardware design (ASHD) architectures can re-
duce computational energy consumption by processing operations
common to specific applications more efficiently than a general
purpose processor. By the nature of their deeply embedded opera-
tion, motes support a limited set of applications, and thus the con-
ventional general purpose computing paradigm may not be well-
suited to mote operation. This paper examines the design consid-
erations of a hardware accelerator for compressed Bloom filters, a
data structure for efficiently storing set membership. We evaluate
our ASHD design for three representative wireless sensor network
applications and demonstrate that ASHD design reduces network
latency by 59% and computational energy by 98%, showing the
need for architecting processors for ASHD accelerators.
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C.3 [Special-Purpose and Application-Based Systems]:
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1. INTRODUCTION

Battery-powered embedded systems carefully manage energy con-
sumption to maximize system lifetime. Wireless sensor networks
(WSNs), made up of many “mote” devices, are often designed to
operate for months without intervention. Sensor networks are typ-
ically used to monitor an environment and may be deployed in
remote and hazardous locations. WSNs can consist of a hundred
motes or more, and cover wide areas. As a result, mote software
and hardware must consider energy consumption at every level.

Motes are simple, pocket-sized computers. Each mote contains
a small battery that powers a radio for wireless networking, a lim-
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ited amount of memory, and a constrained processor. Aggrega-
tion, a widely researched field for reducing data transmissions by
combining data on motes, reduces energy use by spending addi-
tional energy on computation to save a greater amount of energy on
the power-hungry radio [12]. Increasing on-mote processing com-
plexity will require additional computational hardware, demanding
more energy. As sensor networks grow and generate larger data
sets, these energy costs will continue rising.

Unlike PCs, embedded systems often execute a limited set of
applications and have less need for general purpose functionality.
Simple bit manipulations poorly utilize a general purpose proces-
sor. Complex operations, such as multiplication, require several cy-
cles on a general purpose processor. Many embedded applications
require support for these simple and complex operations and most
existing systems must poorly utilize a general purpose microcon-
troller. In contrast, application-specific hardware design (ASHD)
tailors hardware to the application. We refer to these ASHD con-
structs as hardware accelerators. If any of these hardware acceler-
ators are unused, they can be Vdd-gated to almost eliminate energy
wasted on unused features.

This paper explores ASHD considerations during the design of
one such hardware accelerator. The accelerator implements several
operations for compressed Bloom filters, a data structure for effi-
ciently storing set membership. These operations include support
for inserting items, compression and decompression, and querying.
We demonstrate significant performance, power, and energy results
over a general-purpose hardware solution for each custom opera-
tion. In addition, we explore the benefits of ASHD in the context of
three WSN applications: mote health monitoring, object tracking,
and duplicate packet removal. For these benchmarks, Bloom filters
improve network reliability and reduce radio transmissions by up
to 70%. We demonstrate that the ASHD hardware accelerator im-
plementation provides significant gains in network latency (59%),
computational delay (85-88%), and computational energy (98%)
compared to executing the Bloom filter code on general purpose
microcontrollers. Given these improvements, we show the benefits
of architecting processors for ASHD hardware accelerators. The
Bloom filter accelerator can be Vdd-gated when not in use so that
the Bloom filter accelerator only uses energy when it will reduce
total system energy consumption by an even greater amount.

This paper is organized as follows. Section 2 discusses related
approaches to increase energy-efficiency and motivates the ASHD
paradigm. Section 3 describes the algorithms needed for the Bloom
filter hardware accelerator, and Section 4 discusses the architectural
blocks needed to implement the approach. We then quantify power
and performance advantages for the Bloom filter accelerator for
specific operations (Section 5) and larger applications (Section 6).
Finally, we conclude the paper.

2. RELATED WORK

Parallel processing is well known for increasing energy-efficiency
in general purpose computing. Designers distribute computation
across several low-power cores rather than a single high-power
core [14]. The low-power cores operate at a lower frequency, re-
ducing voltage and power requirements. Several cores can be com-
bined in one processor to meet computational goals. Assuming the
lowest possible voltage is used, dynamic power is roughly propor-

tional to nf*, where n is the number of cores and f is the operating
frequency; potential processing capacity is proportional to n f.



Ideally, power demands are minimized when many low-frequency
cores are used. However, several factors limit the power reduction:

e Threshold voltage places a lower bound on voltage scaling.
Subthreshold operation is possible but adds significant design
challenges [20].

e ] eakage current increases the power consumption of each ad-
ditional core.

e Interconnect logic for communication between cores and shared
memory requires additional power and may introduce bottle-
necks.

e Software must be parallelized to run on all cores simultaneously

Application-specific hardware design (ASHD) provides an alter-
native approach that may be more appropriate for embedded sys-
tems due to the more specialized nature of the workloads. Motes
do not require the same amount of general purpose functionality as
a conventional computing system and can be customized for better
performance and lower power. Furthermore, ASHD leverages the
same power-saving properties of parallelism by operating at low
voltage-frequency combinations with high performance, while also
capturing the benefits of explicit hardware support for simple op-
erations such as bit-manipulations that are inefficient on general
purpose cores. Additionally, ASHD systems do not require core
interconnect logic or the software challenges of parallelized code.

Tensilica’s Xtensa design adds custom instructions to a proces-
sor [8]. In this approach, designers integrate custom instructions
into a general purpose processor core. This approach is similar to
our hardware accelerator architecture, however, no partition exists
between general purpose hardware and customized instructions.
The hardware accelerator interface used in this paper and described
in Section 4 includes support for fine-grain Vdd-gating, powering
accelerators down when not in use. Partial Vdd-gating is very dif-
ficult in a monolithic general purpose core. Additionally, all opera-
tions in the Xtensa design must fit within the processor’s instruction
set and architecture. In contrast, hardware accelerators have greater
architecture autonomy and several accelerators can perform back-
ground work in parallel. Clark, et al. [4] automates instruction set
generation from application source for Xtensa-like designs. The
authors create customizations by merging commonly adjacent in-
structions. Although this methodology implements hardware auto-
matically, it is unlikely to create highly complex operations, such as
those designed in this paper. Additionally, this approach is limited
to the same instruction set and architecture confines as the Xtensa
approach.

Other research has focused on building a heterogeneous proces-
sor from pre-existing general purpose cores [18]. This approach
attempts to design custom processors without any custom circuit
design. In addition to the limitations of the customized instruc-
tion processors, the heterogeneous core is also limited by the cores
available. Unusual operations may not have a corresponding core.

3. BLOOM FILTER ALGORITHMS

Bloom filters provide a useful case study for an exploration of
sensor network mote ASHD. Using Bloom filters, many WSN ap-
plications can easily aggregate information and reduce the size of
large data sets containing unique identifiers. These factors can re-
duce costly radio transmissions and lower overall mote energy us-
age. However, some Bloom filter operations may require several
seconds of compute time on general purpose hardware, limiting
the applicability of the approach and incurring high energy usage.
By implementing hardware support for Bloom filters, WSN ap-
plications can achieve significant energy reductions without slug-
gish performance. The Bloom filter hardware accelerator improves
performance and energy use by optimizing several algorithms in
hardware. The accelerator natively supports Bloom filters, multi-
ply and shift hashing, and Golomb-Rice coding support for data
aggregation, near-random hashing, and data compression, respec-
tively. The following sections describe these algorithms in detail.

3.1 Bloom filters

Bloom filters efficiently store set membership of large items by
combining data in a large bit array. Using a small number of hash

functions, h1 . .. hi, Bloom filters reduce storage costs up to 70% [1].

Many applications, including spelling checkers and distributed web
caches currently use Bloom filters. Other work has also suggested
the use of Bloom filters in hardware [16, 15, 6]. However, these
works use Bloom filters for internal processor or network manage-

Table 1: Bloom filter configurations (16KB bit array, 32-bit el-

ements). Bits per item applies to full Bloom filters
Config. Item Bits per Hash False
Capacity Item Functions | Positive
(k) Rate
1 13500 9.71 7 <1%
9000 14.56 10 < 0.1%
3 6500 20.16 14 < 0.01%

ment and do not expose Bloom filters to applications. We discuss
several wireless sensor network applications utilizing Bloom filters
in Section 6.

Our hardware accelerator implements a specific range of Bloom
filter configurations: the bit array is 16KB, up to 16 hash functions
are available, and 32-bit items are supported. Initially, we set every
bit in the array to O, to create an empty Bloom filter. We insert
items by hashing the item z; with every hash function h; ... hj.
The results of these hash functions h1(x;) . .. hg(x;) are addresses
to bits in the array, which we set to 1. As we insert more items,
the number of 1’s in the Bloom filter increases. When inserting
items, we may find some bits already set to 1 due to previous item
insertions writing to the same bit address.

Querying to check if an item z; is in the Bloom filter is similar
to insertion. We hash the item with every hash function h; ... hy
and check each bit’s value at addresses hi(x;) ... hi(z;). If any
hash function points to a 0 bit, we know with certainty the item
is not in the Bloom filter. The item is in the Bloom filter with
high probability if all hash functions point to 1 bits, but we cannot
know with certainty. These “false positive” errors, although rare,
occur when other inserted items hash to the same bits as the queried
item. The false positive rate can be pre-configured as required by
the application, typically from 1% to 0.01%.

Items cannot be removed from a Bloom filter. Hypothetically, an
item could be removed by setting any of the item’s corresponding
array bits to 0. However, many inserted items may hash to the same
bit, and removing one item may inadvertently remove several other
items. If a Bloom filter becomes full, all elements can be cleared
by setting all bits in the array to 0.

The false positive rate, item capacity, and energy requirements to
insert or query an item are determined by &, the number of hashes
used by the Bloom filter. When k is larger, the false positive rate
decreases. However, smaller values of & result in Bloom filters with
a larger item capacity and lower energy cost per item insertion or
query. This trade-off is illustrated in Table 1. A detailed analysis
of Bloom filter configuration is available in [1].

Bloom filters merge by bitwise ORing bit arrays, assuming both
Bloom filters use the same bit array lengths and hash functions.
This property makes aggregating data in a WSN spanning tree a
trivial task: parents can merge Bloom filters from child motes quickly,
insert their own items, and transmit the aggregate Bloom filter to its
own parent.

The Bloom filter is considered full when half of the array’s bits
are 1. At this point, further insertions will dramatically increase the
false positive rate. Bloom filter storage is most efficient when full,
as the bit array is always a constant length. For example, configu-
ration 1 in Table 1 can store 32-bit elements using less than 10 bits
when full.

3.2 Multiply and Shift Hashing

Multiply and shift hashing, described by Dietzfelbinger et al. [7],
is simple, yet effective. Each hash function h; ... hy requires a
hash key HashKey; ... HashKeyy. Hash keys are odd integers
randomly chosen before the Bloom filter is used. The accelerator
represents hash keys as 32-bit integers.

To perform a hash h; of element x;, we calculate

(HashKey; x x;) mod 232 1
932—b (1

hi(z;) =

where b is the number of bits in the Bloom filter bit array address.
For the 16KB bit array used by the accelerator, b = 17. The modulo
and divide are powers of two and can be efficiently implemented
with a bit mask and shift.
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Figure 1: Bloom filter hardware accelerator hardware flow: ar-
rows indicate the direction of information, shaded blocks indi-
cate modules controlled by the Instruction Decoder.

3.3 Golomb-Rice Coding

The accelerator implements Golomb-Rice coding, a popular com-
pression and decompression method used in Apple’s Lossless Au-
dio Codec (ALAC) and Lossless JPEG (JPEG-LS) [13, 17]. As
noted in Section 3.1, a Bloom filter contains more Os than 1s until
filled. Therefore, sparsely filled Bloom filters (under 70% full) can
reduce Bloom filter size through Golomb-Rice coding. The algo-
rithm, a form of run length encoding, is simple to implement, and
therefore power efficient.

The number of 1s in the bit array are first counted to determine
the “remainder part” length . The relation between 1s in the bit
array and [ is precomputed; only a quick lookup is needed to deter-
mine the remainder part length.

Second, the bit array is iterated from start to finish, scanning for
run lengths of Os between 1s. For each run length of n Os, the

remainder part = | 7; | and quotient part ¢ = n mod 2! must be

calculated.

After calculating r and ¢, we write r Os to the compressed bit
stream, followed by a 1. ¢ is then written directly, using [ bits.
This process is used to write all run lengths in the uncompressed
bit stream until the end is reached. The second step’s implementa-
tion does not require any expensive divisions or modulos; a counter
is kept of the current O run length. If the next bit is a 0, the counter

is incremented. If the counter reaches 2, a 0 is written to the com-
pressed stream and the counter is reset. If the next bitisa 1, a 1
is written to the compressed stream, followed by the the counter’s
value using [ bits. Therefore, Golomb-Rice compression can be
reduced to many simple bit operations.

4. ACCELERATOR ARCHITECTURE

This paper leverages the mote architecture described by Hemp-
stead, et al. [10] which provides a framework for custom hardware
accelerators. The architecture proposes a lightweight event proces-
sor for managing power and offloading tasks to hardware accelera-
tors. High-level events and tasks are decoded on the event proces-
sor and deployed to accelerators via memory mapped operations.
A simple processor executes any operations not explicitly handled
by accelerators. We anticipate implementing hardware accelerators
as synthesized standard cells (e.g. ASIC flow) or through a shared
on-chip programmable FPGA substrate.

We designed the Bloom filter hardware accelerator to work within
the processor architecture of [10] and support a 16-bit data bus.
The accelerator consists of several modules, illustrated in Figure 1.
In the following sections, we will examine each major module in
the Bloom filter accelerator and discuss design decisions for reduc-
ing energy and delay.

4.1 Bloom Filter Memory

The Bloom filter bit array is stored in four 2K x 16-bit mod-
ules. The bit array is stored sequentially by address, so that bits
are stored in the following order: Module1[0], Module2[0], Mod-
ule3[0], Module4[0], Modulel[1], and so on. We chose a four-
module configuration to provide access to all four memory modules
simultaneously, boosting performance by up to 4x. Only one mem-
ory access is possible per cycle, so increasing the amount of mem-
ory available at a given cycle can greatly improve performance. We
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Figure 3: Average power usage of Bloom filter hardware accel-
erator modules

also decided to use four modules with a 16-bit data bus rather than
one module with a 64-bit data bus because some Bloom filter oper-
ations only use one block per cycle. In this case, the unused three
blocks can be disabled to reduce dynamic power consumption. We
decided not to support an even larger data bus because significant
additional logic would be required and wider bus lengths would
rarely be fully utilized.

4.2 Memory Data Controller

The Memory Data Controller manages data stored in the Bloom
filter memory. The accelerator supports several Bloom filter oper-
ations, each writing to memory in a distinct style. Insertions and
queries only modify one bit at a time, while other operations may
modify one block or four blocks per cycle. The Memory Data Con-
troller is responsible for ensuring each operation can write as many
or as few bits as is required.

The Memory Data Controller also counts the number of 1s in-
serted into the Bloom Filter at every cycle. We use this counter dur-
ing compression operations to eliminate the need for an additional
full memory iteration as described in Section 3.3. As previously
noted, memory access can be a bottleneck, so this optimization is
critical for performance.

4.3 Memory Address Controller

The Memory Address Controller coordinates with other blocks
to correctly set the addresses of each of the four Bloom filter blocks.
Although 1tem insertion and query operations randomly jump from
bit to bit in memory, some operations may sequentially read one
module at a time, and others read sequentially from all blocks si-
multaneously. During sequential operations, the Memory Address
Controller remembers where processing ended in the last cycle so
that the operation can be easily resumed.

4.4 Decompressor

The Decompressor reads 16-bit Golomb-Rice encoded Bloom
filter blocks from the data bus and unpacks up to 64 bits of uncom-
pressed Bloom filter. The Decompressor guarantees the entire com-
pressed block will be processed, or 64 bits of uncompressed Bloom
filter will be unpacked. These derive from the 16-bit data bus and



the 64 bit width of Bloom filter memory. Although these limits
require significant additional logic, we support this higher perfor-
mance design to avoid elevated computation delays when process-
ing Bloom filters containing many elements.

The Decompressor is composed of 16 serially-connected bit de-
compressors, illustrated in Figure 2. This design allows each com-
pressed bit to be decompressed serially. Although each bit could
be decompressed in parallel and reassembled, the serial design al-
lows bit compressors to be disabled when the uncompressed stream
is full, thus reducing dynamic power. A dynamic style would in-
crease the speed of decompression, but is unnecessary due to the
slow 100 KHz clock frequency used by the Hempstead processor.

4.5 Compressor

The Compressor design is similar to the decompressor design
and is composed of 64 serially connected single-bit compressors.
The Compressor reads 64 bits of uncompressed data from the Bloom
filter bit array, producing up to 16 bits of compressed data per cy-
cle. These bit limitations are due to memory access and data bus
limitations respectively. As a result, compressed Bloom filters can
be produced 4x faster than uncompressed Bloom filters. Supporting
these guarantees requires additional logic, but gains in performance
make this addition worthwhile.

S. ACCELERATOR EVALUATION

In this section, we evaluate the design decisions discussed in
Section 4 by comparing power, energy, and performance of the
application-specific hardware design against a general purpose hard-
ware design paradigm.

The Bloom filter hardware accelerator, with the exception of
Bloom filter memory, was implemented in Verilog and synthesized
for the UMC 130nm process using Synopsis Design Compiler, En-

counter, and Cadence. The accelerator area is 792, 850um? and
uses 1.217M transistors. Power calculations are based on Design
Compiler estimates, using the check_power command on high ef-
fort. Bloom filter memory was generated by the Faraday Memaker
tool and power estimates were profiled using Synopsis HSIM sim-
ulations. The accelerator implements two-phase clocking, operates
at 1.2V and supports a 100 KHz clock frequency. Figure 3 shows
the distribution of power between the larger elements of the acceler-
ator. When synthesized individually, each module requires roughly
10% additional energy than shown, however, Design Compiler is
able to reuse logic between modules to reduce total system energy.
Therefore, we assume shared logic savings is proportional to the
total energy cost of each module, and scale each module’s power
equally to match Design Compiler’s system estimate.

The general purpose design uses the Bloom filter software imple-
mentation for motes in Chang, et. al [2]. This software implements
Bloom filter operations exactly as described in Section 3. The soft-
ware was written in nesC for TinyOS 1.1.15 [11] and tested directly
on the TMote Sky mote. The TMote Sky features a relatively pow-
erful 16-bit, 8 MHz TI MSP430 processor with 10KB of memory.
We chose to compare our hardware accelerator with the MSP430
processor due to its wide popularity in the sensor network commu-
nity. For our comparisons, note that the Hempstead mote processor
is completely distinct from the TI MSP430 processor.

Due to memory limitations of the TMote Sky, only 8KB of mem-
ory is available for the Bloom filter bit array in the general purpose
implementation. Since the ASHD implementation uses a 16KB
Bloom filter, the ASHD will use additional power supporting the
additional memory, as well as extra cycles to work on a Bloom fil-
ter twice as large. Yet, the ASHD logic demonstrates significant
performance and energy savings despite this handicap.

Timing figures for the ASHD implementation are generated by
counting the number of cycles used. We assume total system power
for the ASHD design is 886 W, of which 786uW is expended by
the Bloom filter accelerator. The remaining 100pW is consumed
by the Hempstead event processor and other infrastructure logic.

Timing figures for the general purpose implementation are ob-
tained through experimentation. Operations are executed on the
TMote Sky and timed using internal microsecond and millisec-
ond clocks for high accuracy. We assume average TMote power is
4.86mW, derived from the TMote Sky datasheet [5]. Therefore, the
general purpose implementation’s processor power requirements
are almost 450% higher than the ASHD implementation.

For both implementations, we calculate energy as Powera,g X
Time.
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5.1 Item Insertion and Querying

Item insertion is highly efficient in ASHD logic due to native
support for the complex multiply and shift hashing operation. ASHD
logic requires significantly less time for insertions in all cases, as
illustrated in Figure 4. Furthermore, insertion uses 97% less energy
per insertion than general purpose logic, regardless of the number
of hash functions used.

Several factors contribute to the ASHD advantage. First, the
ASHD logic can hash during one cycle due to its native support
for multiply and shift hashing. On the contrary, the MSP 430 pro-
cessor used in the general purpose implementation only supports
16-bit math and must spend many cycles to complete the multipli-
cation operation.

Further, the ASHD implementation does not require additional
logic to perform the required bit shift. Instead, the ASHD logic
simply uses bits 31 through bits 15 (bit O is the least significant bit).
The MSP 430 does not natively support this bit selection and must
spend additional cycles on a 32-bit shift to obtain the corresponding
bit address.

Memory operations limit the speed of as the ASHD implementa-
tion, as only one memory read or write can be performed per cycle.
Therefore, the ASHD insertion implementation requires 2 cycles
per hash (one to read the block, another to write the modified block
back). Parallelizing item insertion would require significant ad-
ditional logic due to the seemingly random bit addressing caused
by the hash function. Although support for processing up to four
hashes could theoretically be possible due to the four Bloom filter
memory modules, the block location of each hash is unknown until
calculated. Furthermore, all hashes could theoretically point to the
same block, making simultaneous bit insertions impossible.

Querying items contained in the Bloom filter is similar to item
insertion: the item is hashed k times and the bit at address h;(z;)
is verified to be 1. This process takes roughly half the time of
insertion on ASHD logic because only one memory read is required
for each hash. The general purpose implementation is time-bound
by the hash function, however, so performance is largely equal to
insertion.

5.2 Compressing Bloom Filters

The ASHD accelerator improves Bloom filter compression per-
formance up to 1800%, as shown in Figure 5, and reduces energy
consumption up to 99%. The key to these ASHD improvements
is custom support for Golomb-Rice coding. When implemented
in software for general purpose systems, each uncompressed bit
must be examined to count run lengths of 0 bits. When a 1 is en-
countered, another lengthy set of bit operations must be performed
to determine the correct sequence of compressed bits. As we in-
sert more elements into the filter and the frequency of 1s increases,
the quantity of run lengths grow and additional work is required
to compress. In general purpose software, this additional work in-
creases the compression delay. The ASHD accelerator also requires
additional cycles as well, but provides a fast upper bound on com-
pression delay. The ASHD compressor guarantees a compressed
16-bit block will be produced or 64-bits of uncompressed data will
be processed every cycle. Therefore, compression can never exceed
81.92ms and is often faster.
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As noted in Section 3.3, the number of 1s in the bit array must be
counted to determine [, before compressing run lengths. Memory
access is slow in the ASHD implementation due to the 100 KHz
clock frequency, and iterating through the memory would require
an additional 20.48ms. To avoid this penalty, the ASHD imple-
mentation counts the number of ones in the filter as they are in-
serted. Therefore, ASHD requires only one memory pass. The bit
tracking technique is not used in the general purpose implementa-
tion due to lack of hardware support. Adding support in software
would require several cycles per insertion or query, operations fre-
quently used in many applications. Adding bit tracking support for
lengthy merge operations would also require significantly larger de-
lays. Performing two passes of memory, a fast process in the 8 MHz
general purpose implementation, requires less delay overall in the
general purpose system.

At 70% of capacity, run lengths become too small to effectively
compress, and Bloom filters are delivered uncompressed. The gen-
eral purpose implementation no longer compresses and simply reads
from memory. Although the ASHD is only 19% faster when the
Bloom filter 1s approaching capacity, recall that the ASHD Bloom
filter is twice the size of the general purpose implementation. If
both implementations used equivalently sized bit arrays, the ASHD
implementation would perform 59% faster. Further, the ASHD
could reduce the uncompressed Bloom filter read delay by 75%
if a wider data bus is used in a future architecture.

5.3 Merging Compressed Bloom Filters

Bloom filter merging uses bitwise ORs to combine a foreign
Bloom filter with the filter stored in the bit array. The foreign
Bloom filter, delivered over the data bus, is processed over sev-
eral segments. If compressed, each foreign Bloom filter segment
must first be decompressed. Meanwhile, the corresponding Bloom
filter segment stored in memory is loaded. The two segments are
bitwise ORed and saved back into the bit array memory.

Bloom filter merging performance resembles Bloom filter com-
pression performance, as shown in Figure 5. The ASHD acceler-
ator performs up to 2700% faster and can reduce the energy cost
by more than 99%. This performance boost is largely due to the
ASHD decompressor design. The decompressor guarantees the en-
tire compressed Bloom filter segment will be decompressed, or four
blocks of uncompressed memory will be processed. The first guar-
antee provides an upper bound of 163.85ms per merge, but the sec-
ond speeds up the process when the foreign Bloom filter is highly
compressed.

The large gains are only obtained when using compressed Bloom
filters. Rice-Golomb coding is relatively inefficient in general pur-
pose hardware due to the large number of bitwise operations. How-
ever, once uncompressed Bloom filters are used beyond 70% capac-
ity, general purpose performance noticeably improves. The general
purpose implementation appears to operate faster beyond 70% ca-
pacity due to the memory size disparity between implementations.
If both implementations used the same bit array size, the ASHD
implementation would require 34% less time and 88% less energy.

When low or no compression is used, the data bus limits per-
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formance. Because each Bloom filter segment requires two cycles
(once to read from the bit array and once to write), 16,384 cycles
are required to perform a merge in the worst case. If a larger data
bus were used in a future architecture, merging delay could be re-
duced by an additional 75%.

6. APPLICATION EVALUATIONS

In this section, we examine several distinct Bloom filter-based
wireless sensor network applications to demonstrate Bloom filter
gains and evaluate ASHD performance and energy improvements.
Each application represents a different class of Bloom filter use.
The mote status application shares a Bloom filter across a sensor
network, so that a central server can check if any motes in a large
network require attention. In the object tracking application, each
mote in the network individually records the unique identifiers of
sensed objects in a private Bloom filter, periodically transmitting
the filter to a central server. The duplicate packet removal applica-
tion uses a Bloom filter to locally store identifiers of each packet
received to quickly remove any packets duplicated by routing er-
rors.

Mote networks may contain thousands of motes in the future, and
managing mote operation will be critical in maintaining reliability.
Mote networks are typically routed in a spanning tree formation
and support multi-hop routing. A central server will connect to the
root mote to send, analyze, and store information from the sensor
network. If a mote is not close enough to directly transmit data to
a desired mote, data can hop across several intermediate motes to
reach its destination. For example, if a mote wishes to send data to
the central server, the mote would send a packet to its parent mote,
which sends the packet to its own parent mote, eventually reaching
the server by way of the root mote. Extremely large mote networks
can easily become saturated if storage and transmissions are not
properly managed.

The following examples assume the sensor network uses a two
child per parent routing tree structure. We also assume mote radios
have a 40kbps effective data rate (does not include transmission
overhead) [3]. All calculations are estimations based on the ASHD
accelerator analysis from Section 5 and on-mote timing profiling of
the general purpose implementation software.

6.1 Mote Status

Spanning tree topology can be problematic for the root mote and
motes nearby. The root mote must forward every packet sent from
the sensor network to the central server; nearby motes must also
handle large amounts of network traffic. Recall that Mote radios
are slow and power-hungry. In many cases, the root mote will not
be able to forward data to the server quickly enough, resulting in
dropped packets and poor quality of service. Even if the radio can
handle the network traffic, the radio will quickly exhaust the root
mote’s energy and cut off the sensor network from the server.

Bloom filters can greatly reduce the transmission load on these
taxed motes by efficiently aggregating mote status information, such
as low battery warnings, within the network. In this example, we
will support a sensor network of 128,000 motes to demonstrate this
application’s ability to monitor extremely large sensor networks by
using Bloom filters. We will use a 4-byte unique identifier to rep-
resent each mote and assume 10% of the mote batteries are low at
any given time. A mote can send a low battery alert by periodically
transmitting its unique identifier (UID) to the server via its parent.
Leaf motes on the boundaries should individually send these UIDs
without Bloom filters. As Figure 6 indicates, Bloom filters are only
efficient when at least 15% full, or when about 2000 items are in-
serted with a 1% false positive rate. As these low battery alerts hop
from parent to parent, approaching the root mote, each parent mote
will need to forward twice as many alerts as each child. When a
mote has received 2000 or more items, it should create an empty
Bloom filter and insert these elements. This Bloom filter will then
be sent to the following parent mote, which will merge any Bloom
filters it receives, insert UIDs sent sequentially without Bloom fil-
ters, and insert its own UID if its battery is low. This process of
merging Bloom filters and inserting single UID items will continue
as Bloom filters approach the root mote. The root mote will finally
deliver a single Bloom filter, containing all low battery alerts, to
the server. The server can then query the Bloom filter for each UID
in the network to discover which motes require attention. Addi-
tionally, the server can track alerts over time to reduce errors from
false positives: by identifying motes which consistently report low
batteries, the server can remove erroneous alerts that sporadically
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Figure 6: Storage cost per item for a 16KB Bloom filter and
1% false positive rate. Bloom filters are more efficient than
sequentially storing 32-bit items when the bit per item cost is
under 32 bits.

appear. Meanwhile, all motes will clear their Bloom filters and
restart the process as needed.

Both ASHD and general purpose approaches implement the same
algorithms, so both are capable of reducing transmissions near the
root mote up to 70%, thus reducing use of the mote’s most power-
hungry component. However, the ASHD implementation signifi-
cantly reduces Bloom filter end-to-end delay: the maximum delay
from a mote issuing a low battery alert to the server detecting the
alert, is reduced from the general purpose implementation’s 46s
to 19s, assuming no transmission errors. Furthermore, the ASHD
implementation reduces Bloom filter computation energy costs by
98% to 2.73ml] for every network-wide mote status scan.

6.2 Object Tracking

Previous work has used mote networks for object tracking [19].
Motes can identify objects by a unique ID using technologies such
as RFID. In this application, we use Bloom filters with a sensor
network to find packages in a busy package delivery warehouse.
We assume each package has an RFID tag, so motes can detect
package UIDs when nearby.

As packages move within the vicinity of a mote, the mote will
wirelessly read the package’s UID and store it in the mote’s Bloom
filter. When the Bloom filter becomes full, the mote will send the
Bloom filter to the server. Note that the object tracking applica-
tion does not merge Bloom filters with other motes. Instead, its
Bloom filter is forwarded by other motes to the server for analy-
sis. When a package is lost, the server looks at the most recently
received Bloom filter for each mote and queries each to see if any
have seen the package. If a false positive causes the package to ap-
pear in multiple places, previous Bloom filters can be examined to
correctly identify the package location.

Note that this merge-free approach requires additional latency:
Bloom filters only store data for one mote, so more time is required
to fill the Bloom filter. However, this technique also ensures Bloom
filters are sent when they are full and store items most efficiently.
When latency is not critical, individualizing Bloom filters can im-
prove transmission energy costs at every hop, not just near the root.

To build each Bloom filter, we must clear the Bloom filter, insert
enough UIDs to fill the filter, and read the Bloom filter for trans-
mission. With a false positive rate of 1%, the ASHD accelerator is
able to reduce Bloom filter computation to 2.13s. This 85% reduc-
tion in delay over the general purpose logic design corresponds to
a 97% reduction in computation energy consumption.

6.3 Duplicate Packet Removal

Bloom filters are well equipped for removing duplicate pack-
ets [9]. Wireless sensor networks are particularly susceptible to
duplicate packets due to wireless transmission errors. By using
Bloom filters to track whether a packet was previously received,
these transmission errors can be filtered out. When a mote receives
a packet, the mote creates a unique packet identifier from the source
packet’s UID and the packet’s sequence number. We query the
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Bloom filter using this packet identifier. If the packet is found, we
process the packet and send an acknowledgment to the source mote
to indicate that the packet was received. We also insert the packet’s
identifier into the Bloom filter. If found, we likely received the
packet and ignore it. However, we send an acknowledgment to the
source mote indicating a duplicate packet because false positives
may cause us to mistakenly ignore an original packet. However, the
source mote will realize the mistake upon receiving the acknowl-
edgment and resend the same packet with a new sequence number.
Dropped packets will be detected when no acknowledgment is re-
ceived by the sending mote. In this case, the packet will be resent
with the same sequence number.

Although this application does not transmit Bloom filters, the
accelerator improves storage ability and reduces search time. The
Bloom filter accelerator stores more than 200% additional packet
UIDs and provides extremely fast search times. Individually stored
packet identifiers would require significantly more physical mem-
ory and additional searching algorithms.

When working with frequent radio transmissions, delays must be
minimized. In the worst case, each delivered packet requires one
item query and one item insertion to eliminate duplicate packets.
For a 1% false positive rate, this process requires 240us with the
ASHD accelerator. This performance boost corresponds to an 88%
delay reduction and 98% computation energy reduction over the
general purpose implementation.
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Conclusion

We demonstrated the power, energy, and performance benefits of
application-specific hardware design over general purpose design
for wireless sensor networks and other embedded systems. Unlike
desktop computers which must support an endless number of pro-
grams, wireless sensor networks require support for select few ap-
plications. Our mote status, object tracker, and duplicate packet
removal applications demonstrate significant gains by designing
hardware to fit application needs. Through hardware acceleration,
WSN applications can aggregate information in-network, improve
network reliability, reduce transmission latency, and efficiently store
and search data.
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