
Thread Motion: Fine-Grained Power Management for
Multi-Core Systems

Krishna K. Rangan†‡ Gu-Yeon Wei† David Brooks†

†Harvard University
33 Oxford St., Cambridge, MA 02138

{kkrangan, guyeon, dbrooks}@eecs.harvard.edu

‡Intel Massachusetts
77 Reed Road, Hudson, MA 01749

{krishna.rangan}@intel.com

ABSTRACT
Dynamic voltage and frequency scaling (DVFS) is a commonly-used power-
management scheme that dynamically adjusts power and performance to
the time-varying needs of running programs. Unfortunately, conventional
DVFS, relying on off-chip regulators, faces limitations in terms of temporal
granularity and high costs when considered for future multi-core systems.
To overcome these challenges, this paper presents thread motion (TM), a
fine-grained power-management scheme for chip multiprocessors (CMPs).
Instead of incurring the high cost of changing the voltage and frequency of
different cores, TM enables rapid movement of threads to adapt the time-
varying computing needs of running applications to a mixture of cores with
fixed but different power/performance levels. Results show that for the same
power budget, two voltage/frequency levels are sufficient to provide perfor-
mance gains commensurate to idealized scenarios using per-core voltage
control. Thread motion extends workload-based power management into
the nanosecond realm and, for a given power budget, provides up to 20%
better performance than coarse-grained DVFS.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures—Dis-
tributed architectures

General Terms
Performance, Design

1. INTRODUCTION
Power dissipation continues to be a primary design constraint in

the multi-core chip era. Increasing power consumption not only re-
sults in increasing energy costs, but also results in high die temper-
atures that affect chip reliability, performance, and packaging cost.
From the performance standpoint, current and future multi-core
systems will have to carefully constrain application performance
to stay within power envelopes. For example, power constraints re-
sult in reduced per-core throughput when multiple cores are active
in current Intel processors [2]. Fortunately, multi-core systems host
applications that exhibit runtime variability in their performance re-
quirements, which can be exploited to optimize throughput while
staying within the system-power envelope.

Dynamic voltage and frequency scaling (DVFS) schemes seek to
exploit runtime variability in application behavior to achieve maxi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’09, June 20–24, 2009, Austin, Texas, USA
Copyright 2009 ACM 978-1-60558-526-0/09/06 ...$5.00.

mum energy savings with minimal performance degradation. How-
ever, traditional DVFS scaling, which is initiated by the operating
system (OS), has two primary drawbacks: First, OS scheduler sam-
pling intervals are on the millisecond time scale, while computa-
tional requirements can vary on the nanosecond time scale due to
events such as cache misses. Hence, OS-driven DVFS is too slow
to respond to such fine variations in program behavior. Second,
multi-core systems execute multiple applications with potentially
very different computational needs. Even though the performance
advantages of per-core DVFS in multi-core systems have been sug-
gested [11, 15], providing per-core, independent voltage control in
chips with more than two cores can be expensive [15]. Moreover,
when DVFS is applied across multiple cores, determining a single
optimal DVFS setting that simultaneously satisfies all cores will be
extremely difficult; some applications will suffer performance loss
or power overheads. This problem worsens as the number of cores
and running applications increase in future systems.

Clearly, a fast-acting, yet cost-effective mechanism to obtain the
benefits of per-core DVFS on systems with a large number of cores
is desirable. Trends in current multi-core systems suggest: (1) Even
though per-core, independent voltage control is currently impracti-
cal, future systems with a multitude of cores can be expected to
have a small number of independent voltage and frequency do-
mains [1, 3]. As such, cores that differ in power-performance ca-
pabilities will exist. (2) Future high-throughput systems are likely
to pack together a large number of simple cores [23,25,27] hosting
many more applications. Unfortunately, these trends further exac-
erbate the problems of using conventional DVFS. To address these
limitations, we propose a fast, fine-grained power-management ap-
proach that we call thread motion (TM).

Thread motion is a power-management technique that enables
applications to migrate between cores in a multi-core system with
simple, homogeneous cores but heterogeneous power-performance
capabilities. For example, envision a homogeneous multi-core sys-
tem where cores differ only in terms of their operating frequency
and voltage. Such power-performance heterogeneity offers a way
to accommodate a wide range of power envelope levels without
limiting the performance of all of the cores together. Instead, it
offers a mixture of performance capabilities with a small num-
ber of static voltage/frequency (VF) domains. As applications run
on these cores, TM enables applications to migrate to cores with
higher or lower VF settings depending on a program’s time-varying
compute intensity. If one application could benefit from higher VF
while another is stalled on a cache miss, a swap of these two appli-
cations between cores of different power capabilities may provide
overall improvements in power-performance efficiency. Compared
to slow transition times of conventional regulator-based DVFS
schemes, thread motion can be applied at much finer time intervals

302

AB

X Y

(Return from
cache miss)

time

App A

(Cache Miss)
High-VF

A
ct

iv
ity

App B

Low-VF

time

A
ct

iv
ity

App A

App B

High-VF

(c)

Low-VF

Low IPC

High IPC

(b)

(a)
Figure 1: (a) Illustration of thread motion in a multi-core system. (b) Exploiting fine-grained application variability in two running threads. (c) Duty cycling
between 2 VF levels to match application IPC.

and applied more often. Another potential benefit of rapidly mov-
ing applications between cores is that, by doing so, applications
experience a virtual (effective) voltage that is in between the fixed
voltage levels of different cores. In fact, thread motion yields the
net effect of implementing multiple VF domains while only using
two VF levels and keeping system-level costs in check.

While the potential performance benefits of thread motion may
be intuitively obvious, it is important to identify and evaluate all of
the costs and overheads associated with it. Future multi-core sys-
tems offer a plethora of design choices in terms of the number of
cores and core complexity. Simple cores with shared resources are
likely to be present in future many-core systems featuring tens or
hundreds of cores among other possible design alternatives. Hence,
we evaluate thread motion in the context of a high-throughput ma-
chine featuring clusters of simple in-order cores with some shared
L1 cache state (similar to Rock [27]). We study the performance
benefits of thread motion constrained to different power envelopes
using two approaches: (1) a coarse-grained prediction-driven ap-
proach evaluated at fine granularities, called time-driven TM; and
(2) a last-level cache miss driven approach, called miss-driven TM.
To understand the cost-benefit tradeoff, we provide a detailed anal-
ysis of all power and performance costs associated with TM.

The main contributions of this paper are as follows:

1. Fine-grained program variability motivates the need for fine-
grained power management—we analyze SPEC CPU 2006
applications and show that applications can have significant
fine-grained performance variability (Section 2). For several
applications, we show that variability observed at 300-cycle
granularities is an order of magnitude higher than when ob-
served at coarser 10000-cycle granularities.

2. Thread motion on systems with two VF domains can perform
nearly as well as having continuous, per-core VF levels but
no motion. In other words, thread motion can be used to pro-
vide applications with any virtual (effective) power level be-
tween the lowest and the highest voltage/frequency settings
(Section 3).

3. Thread motion can exploit fine-grained variability in appli-
cation behavior. Even after accounting for all motion-related
costs, up to 20% higher performance can be achieved com-
pared to a design without motion that uses ideal (oracle-
based) static VF assignments and equivalent power budgets
(Section 5).

2. MOTIVATION
In this section, we take a closer look at traditional DVFS and

elaborate on its limitations. We then introduce the basic concepts
of thread motion, illustrate how it can overcome traditional DVFS
limitations using synthetic examples, and briefly explain how it is
different from other contemporary fine-grained power management
schemes. Finally, we present studies of real applications that un-
derscore the importance of fine-grained power management using
thread motion.

2.1 Limitations of traditional DVFS
DVFS is a well-known and widely-used power management

technique in contemporary microprocessors. In the context of
CMPs, power management using dynamic VF scaling seeks to re-
duce power consumption when cores are idle, boost single-threaded
performance in the presence of large workloads, and remap VF set-
tings to improve performance and energy utilization. DVFS algo-
rithms typically use application behavior to arrive at the appropri-
ate VF setting for the core the application is running on. In multi-
core systems with DVFS applied with a single power domain (or
a small number of domains), the individual needs from all cores
are consolidated to arrive at a single chip-wide VF setting, which
often compromises performance and/or power efficiency. Other-
wise, each core dictates individual settings on systems that support
per-core VF, but there are cost and scalability concerns of imple-
menting per-core DVFS on systems with a large number of cores.
State-of-the-art systems such as Intel’s Core 2 series use power gat-
ing to shut down power to the unused cores, but all active cores use
the same voltage setting. AMD’s Griffin processor does provide
dual-power planes for per-core voltage/frequency control [1], but
prohibitively high costs of off-chip regulators will likely limit per-
core voltage control beyond dual core systems.

DVFS algorithms are typically implemented in the operating sys-
tem. Consequently, the application phase monitoring and requests
for core power mode transitions occur at the millisecond time scale
of the OS scheduler. Previous work [11] has recognized the impor-
tance of monitoring application phase activity on finer time scales
and has proposed using a global power manager framework to re-
evaluate DVFS decisions at intervals on the order of hundreds of
microseconds. However, all state-of-the-art DVFS-based power
management schemes in use (or proposed earlier) incur a large VF
transition delay to arrive at the target power mode. The voltage
transition delay, which is on the order of tens of microseconds, is

303

1

10

100

1000

10000
V

ar
ia

bi
lit

y
P

er
 M

ill
io

n
In

st
ru

ct
io

ns

 c
al

cu
lix

pe
rl.

sp
lit

na
m

d

 t
on

to

 p
ov

ra
y

 s

je
ng

bz
ip

2.
te

xt
ga

m
es

s.
h2

o
go

bm
k.

sc
or

h2
64

re
f.m

a
go

bm
k.

nn
gs

pe
rl.

ch
ec

k
ga

m
es

s.
tri

go
bm

k.
tre

v
ga

m
es

s.
cy

t
bz

ip
2.

so
ur

h2
64

re
f.b

a
gc

c.
sc

ila
b

go
bm

k.
tre

v

gc
c.

g2
3

pe
rl.

di
ffm

bz
ip

2.
pr

og
bz

ip
2.

co
m

b

 d
ea

lII

gc
c.

16
6

gc
c.

c−
ty

pe

gc
c.

20
0

h2
64

re
f.s

s
lib

qu
an

tu
m

 c
ac

tu
sA

D
M

hm
m

er
.re

tr
as

ta
r.r

iv
e

gr

om
ac

s

gc
c.

s0
4

 g
cc

.e
xp

r2
 g

cc
.e

xp
r

as
ta

r.b
ig

l
gc

c.
cp

−d
ec

 l
es

lie
3d

bz
ip

2.
ch

ic
bz

ip
2.

lib
e

 m
cf

hm
m

er
.s

w
is

om

ne
tp

p
so

pl
ex

.p
ds

go
bm

k.
13

x1
so

pl
ex

.re
f

m
ilc

 s

ph
in

x

 lb

m
 g

em
sf

dt
d

10000 4000 1000 500 300

(a) Variability for different intervals

0 0.5 1 1.5 2 2.5 3 3.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Variability Per Thousand Instructions (VPKI)

IP
C

Low Variability (C)

High Variability (A)

Mid IPC & High Var (D)

Mid IPC (B)

(b) Variability & IPC

Figure 2: Variability and IPC of SPEC CPU 2006 workloads.

due to off-chip voltage regulators that limit how quickly voltage can
change, and the frequency transition delay comes from PLL relock
times. These transition delays fundamentally limit re-evaluation of
application behavior and remapping core VFs at finer time scales.
In contrast, microarchitectural events such as cache misses intro-
duce application variability at nanosecond granularities. Thread
motion seeks to adapt to this microarchitectural variability and ex-
tend DVFS benefits to the nanosecond realm by working around
the aforementioned VF transition delay.

Illustration of thread motion benefits. We illustrate the ba-
sic concepts of thread motion in Figure 1 given a collection of
cores with heterogeneous performance. Figure 1(a) assumes two
levels of core performance, where dark cores have higher perfor-
mance. As the performance needs of the applications vary over
time, thread motion moves applications amongst the cores. Fine-
grained power management with thread motion offers two impor-
tant benefits: (1) TM provides an opportunity to apply DVFS ben-
efits to program variability arising out of microarchitectural events,
which is impractical with conventional DVFS, and boost perfor-
mance at a given power budget. This is illustrated in Figure 1(b)—
fast TM enables application B to benefit from running on the high-
VF core when application A is stalled on a cache miss. (2) TM
enables fast movement of applications between cores, and by do-
ing so, applications can appear to operate off of a virtual (effective)
voltage that is between the fixed voltage levels of the two cores.
As Figure 1(c) shows, the high IPC application B spends a larger
fraction of its running time on the high-VF core, and realizes an
effective VF that hovers near the upper range, between high- and
low-VF levels. This has a net effect of achieving per-core DVFS
benefits even on systems with only 2 VF levels.

Differences from other fine-grained approaches. Typically,
contemporary fine-grained power management involves: (1) clock
gating and gating of pipeline stages, but it is important to note that
these benefits are orthogonal to the cubic-reduction in power ben-
efits achieved using DVFS; and (2) fine-grained, rapid scheduling
of new threads (using an SMT scheduler, for example), when the
hardware or the compiler cannot avoid a thread stall. The newly
scheduled thread masks the latency of the cache access of the wait-
ing thread. However, systems that employ large degrees of multi-

threading to exploit fine-grained variations in program behavior
and increase throughput also require significant memory bandwidth
and incur high system power penalties [29]. Furthermore, all cores
have to run at peak power to always mask the latency of cache
accesses, which may not scale in the context of future systems
with many more cores. We expect future systems to be power-
constrained; that is, not all cores will be at peak power all of the
time. The goal of thread motion is to increase system throughput
by maximally squeezing performance out of a fixed set of running
applications at a given power budget.

2.2 Application Variability
Having looked at synthetic examples to illustrate the basic con-

cepts of TM, we now turn our attention to understanding the behav-
ior of real workloads. Our analysis of fine-grained power manage-
ment begins by studying the characteristics of SPEC benchmarks.
We collected representative program traces of SPEC CPU 2006
IA32/x86 binaries for use with our simulator (complete details of
the simulation framework are provided in Section 4.2). Our simu-
lator includes an in-order timing model for the core and a two-level
cache hierarchy—separate 16KB L1 instruction and data caches
and a unified 2MB L2 cache. For each memory instruction in the
trace, the simulator determines hit/miss information and the level
of the hierarchy where the hit occurred. Each memory instruction
takes a number of cycles equal to the latency of the level in which
it hits, and each non-memory instruction takes a cycle to finish.
We assume hit latencies of 2, 12, and 150 cycles for L1, L2, and
memory accesses. We found that the other hit latencies have little
impact on the relative ordering of applications based on our vari-
ability metric. We use the IPC information to compute variabilities
at various window sizes.

In order to understand variability in the runtime performance
needs of applications, we have devised a simple metric. Our vari-
ability metric evaluates the magnitude of fine-grained change in ap-
plication behavior across various window sizes. It is computed as
follows. For each SPEC 2006 workload, we track the IPC for sev-
eral different window sizes, by measuring the ratio of instructions
committed to the total number of cycles within a window interval.
We define Interval Variability as the absolute difference between

304

Data Switch

IO

Core 0 Core 1

Core 2 Core 3

L1 L1

Cluster 1

L1

Cluster 2

L1

Cluster 3

L2 Data

L2 Data

In
st

ru
ct

io
n

D
ec

od
e

In
te

ge
r U

ni
t

FP
 U

ni
t

B
as

ic
 E

xe

R
eg

is
te

rs
FP

R
eg

is
te

rs

Sh
ar

ed
 L

1
I &

 D
 C

ac
he

D
at

a
Sw

itc
h

Eight 32-bit Registers

Six 16-bit
registers

EFLAGS

Instruction Pointer

Eight 80-bit Registers

16-bit Control/
Status Registers

FPU Instruction Pointer

CPU core and Int. & FP Register State

Figure 3: Architecture resembling Sun’s Rock which has all cores sharing first-level cache [27]. Also shown are CPU core details and core RF states.

the IPC in an interval compared to the IPC in the previous interval.
Total variability in the benchmark is the sum of interval variabil-
ity across all of the intervals. Variability Per Instruction (VPI) is
arrived at by dividing this total application variability by the total
number of instructions in the trace. Figure 2(a) shows Variabil-
ity Per Million Instructions for SPEC 2006 benchmarks and input
combinations. Each stacked bar in the figure shows the cumulative
variability for each window size (in log scale). As can be seen,
variability is more pronounced at smaller window sizes (an order
of magnitude higher for several workloads), but is muted at coarser
levels. In other words, the amount of application variability is a
strong function of the window (or sampling) interval. Smaller inter-
vals help capture cache effects that stall the processor, while coarser
intervals that span tens of thousands of processor cycles mask or
average out the effects of different microarchitectural events. This
variability at fine granularities has an important implication that
motivates our work—increased power savings are possible using
fine-grained power-management techniques.

In addition to understanding application variability, it is impor-
tant to understand the relationship between variability and IPC.
Figure 2(b) shows the relationship between the overall IPC of an
application and variability. Cache effects dictate both variability
and IPC, and the metrics are moderately correlated: low-IPC ap-
plications tend to have high variability and mid-IPC applications
have moderate variability. Understandably, the two applications
with highest overall IPC, calculix and perl.splitmail, are compute
intensive with fewer last-level cache misses, and they exhibit very
low variability. The figure shows four groups of applications that
cover a range of application variabilities and IPCs. We will use
these four groups to examine the performance impact of TM in Sec-
tion 5.4. As we will see later, TM not only helps applications with
high variability, but also benefits applications with little variability
when the mixture of applications running in the multi-core proces-
sor has variability in IPCs (previously illustrated in Figure 1(c)).
We will also show that TM can take advantage of variability avail-
able at fine resolutions for seemingly static, high-IPC workloads.

3. THREAD MOTION
The goal of thread motion is to enable DVFS benefits at nanosec-

ond time scales by exploiting variations arising from microarchitec-
tural events. However, the benefits of the technique must be care-
fully studied in the context of all the overheads it incurs. In this

section, we take a closer look at TM limitations and introduce the
architecture used to evaluate TM. We propose different TM strate-
gies, highlight all the costs incurred, and discuss implementation of
TM approaches using a TM manager.

Benefits and limitations. Thread motion enables fine-grained
tracking of program behavior that conventional DVFS cannot. As a
result, TM can increase the system throughput for different power
envelopes. Equally important to the performance benefits, is the
ability of TM to provide an effective intermediate voltage with
only two VF settings, thus cutting down system costs. As men-
tioned in Section 1, this paper evaluates TM on a multi-core de-
sign setting featuring simple cores, and makes a couple of assump-
tions. First, TM relies on rapid movement of applications between
cores and, hence, is constrained to systems featuring simple homo-
geneous cores with relatively small amounts of architected state.
Second, TM targets power-constrained multi-core systems, which
do not have all cores operating at the peak power, featuring cores
that differ in their power-performance capabilities through volt-
age/frequency settings. Implementation of TM on other multi-core
alternatives may require additional hardware support and is beyond
the scope of this paper.

Architecture. With these assumptions in place, we study TM
on a 16-core CMP system featuring simple, in-order, x86 cores
sharing 2MB L2 cache. The architecture, shown in Figure 3, con-
sists of cores grouped to form clusters—four cores form a clus-
ter and all clusters share the last-level cache. L1 I&D caches are
shared by all cores in each cluster. As mentioned in Section 1, this
architectural configuration resembles a production system, Sun’s
Rock [27], which has small cores sharing first level caches and a
2MB L2 cache. The shared L1 caches enable low-overhead move-
ment of applications within a cluster, but as we will see later, even
inter-cluster movement can provide benefits. We elaborate on the
architectural parameters along with our simulation framework in
Section 4, but use this framework to overview the costs associated
with TM and the TM algorithms that can be used.

3.1 TM Framework
In order to extend DVFS benefits to nanosecond time scales, we

propose two approaches to implement TM that leverage applica-
tion variability arising out of microarchitectural events: (1) Our
first approach, called time-driven TM, is a straight-forward exten-
sion of traditional DVFS techniques that re-evaluate program be-

305

havior at fixed intervals (TM-intervals), and re-assigns core VFs to
fit the power budget. Time-driven TM examines program behavior
at nanosecond granularities and it moves applications to cores with
VF settings that best match their needs. (2) Our second approach,
called miss-driven TM, uses a cache miss as a trigger to evaluate
thread motion possibilities, and manages the power overhead of
the stalled application by balancing it with the performance needs
of active applications. Both schemes exploit fine-grained variations
arising from microarchitectural events.

Intra- and inter-cluster TM. The architecture configuration
shown in Figure 3 consists of cores grouped to form clusters. Ap-
plications can move to a core with a different power level within
a cluster (intra-cluster transfer) or migrate to a core in a differ-
ent cluster (inter-cluster transfer). Inter-cluster transfers pose ad-
ditional cost and implementation challenges (Section 3.2), but also
provide increased benefits by exposing a richer set of available core
VF choices (Section 5.2). The TM algorithm, discussed in Sec-
tion 3.1.1, must carefully balance the benefits of inter-cluster trans-
fers with the anticipated costs.

TM Manager. To implement TM approaches and evaluate their
benefits, we model a TM manager. This manager, which runs
the TM algorithm, is similar to previously proposed global man-
ager approaches for power management [11]. We envision the TM
manager running in a separate embedded microcontroller. Existing
production systems already execute firmware code in a dedicated
embedded microcontroller to monitor and maximize performance
using VF control, subject to runtime power and temperature con-
straints [21]. The firmware has interface registers to the rest of the
system that provides control and status information.

3.1.1 Algorithm
Several previously proposed DVFS algorithms [9, 14] are too

computationally complex for the time-scales TM targets. Instead,
we implement our TM algorithm as a simple, cost-benefit anal-
ysis continuously performed in a loop. It uses the application’s
predicted IPC as the expected IPC for the next TM-interval (Sec-
tion 3.2.1). We refer to the window of IPC prediction as the pre-
diction period. TM incurs cost overheads that are factored into the
expected IPC to arrive at the effective IPC of the application, if it
were an intra- or inter-cluster transfer participant.

effective IPC =
instructions committed in prediction period

cycles in prediction period + predicted TM cost

The TM algorithm maintains a separate table of intra- and inter-
cluster effective IPCs for each application. For the miss-driven TM
approach, upon a miss in an application running on a high VF core,
the application with the highest effective IPC that is not already at a
high-VF core is chosen as the swapping parter, and TM is initiated.
For the time-driven approach, at TM intervals, changes in core and
application mappings, if any, are applied.

Locally-optimal assignments. The TM algorithm prioritizes
moving of applications between cores within a cluster. However,
if intra-cluster motion is not possible (for example, all other ap-
plications in the cluster are well-suited to their core power levels),
inter-cluster migration is performed. In addition to this locally-
optimal move methodology, we considered globally-optimal TM
schedules, but found little additional benefit, and do not consider
them further due to cost and scalability concerns resulting from the
low TM time constants.

Policy. Our TM algorithm’s assignment policy is geared towards
minimizing performance loss; that is, it maximizes the number of
committed instructions in the system by assigning an application
in a compute-intensive phase to a high VF core. Our chosen pol-

icy facilitates straightforward comparisons to static configurations
(in which the entire trace is simulated using the pre-determined op-
timal VF to maximize throughput (Section 4.3)). It is important
to note that other policies, such as those that guarantee fairness or
that tackle thermal problems, dictate TM for reasons other than in-
creased system throughput, and can also fit into the TM framework.

3.2 Costs of Thread Motion
The TM algorithm requires an estimate for both the predicted

IPC on the new core and the costs associated with the TM event.
Despite using simple cores that share first-level caches, thread mo-
tion incurs latency costs to copy architected state among cores and
overheads for inter-cluster transfers.

3.2.1 Prediction
The first step for our TM algorithm is to predict the best VF

level for each running application for the next TM interval. This
prediction is similar to that used in DVFS control algorithms [12].
Prediction techniques rely on past performance history of the ap-
plication to predict the metric(s) of interest [6,12]. We investigated
a variety of predictors and chose a simple last-value predictor. We
also experimentally determined that a 1000 cycle prediction period
provides the best accuracy with an average error of 12.5%.

Inter-cluster TM incurs cache penalties, discussed in the next
section. In order to estimate these costs, an estimate of the amount
of additional memory traffic that will be incurred because of appli-
cation migration must be calculated. The algorithm uses the count
of memory instructions to evaluate inter-cluster TM. As with the
IPC metric prediction, we obtained the best results for the last-value
prediction mechanism. The average error was 4% across all work-
loads for a sample period of 1000 cycles.

3.2.2 Inter-Cluster Cache Penalty
Inter-cluster TM results in loss of L1 cache data for the applica-

tions that move. We leverage the existing MESI coherence protocol
to handle on-demand transfer of data using the shared-L2 cache for
applications that move (similar to [10]). The TM algorithms use
memory instruction prediction to evaluate the cost of moving an
application to a new cluster. For the in-order cores studied, there is
a simple relationship between the number of memory references in
the application and performance losses due to cache misses. Inter-
cluster transfer includes loss of first-level TLB state as well. How-
ever, the shared L2 TLB (behind the first-level TLB) is accessed
simultaneously when the first-level cache miss is serviced, and is
not in the critical path. Inter-cluster transfer results in additional
cache traffic to the last-level cache and has power implications; we
study this in detail in Section 5.5.

3.2.3 Register File Transfer Latency
The architected state of the in-order, x86 cores we model con-

tain basic program execution registers—8 32-bit integer regis-
ters, 6 16-bit segment registers, EFLAGS register and Instruc-
tion Pointer (IP) [4]—and a separate x87 FPU register file with
8 FP data registers, and 6 control/status/IP registers (shown in Fig-
ure 3). Special debugging and error reporting registers may be dis-
abled during TM. In addition to the architected register files, x86-
microarchitectures often require a large internal register state. By
transferring data on macro-instruction boundaries, we avoid having
to copy the internal registers. We reserve dedicated cache lines in
the shared caches to hold a copy of the core RF state. The first-level
caches hold the RF states for all cores that share the cluster and the
last-level caches hold the RF states for all cores. This introduces
a small overhead; storing 2 KBits for each core RF state results in

306

Parameters Values
Separate L1 I&D Caches 16KB and 2-way per core,

32-byte line size, LRU,
shared by cores in cluster

L2 Unified I&D Cache 2MB, 16-way, 64-byte line
size, pseudo-LRU shared by
clusters

L1/L2/Mem latency 2/12/150

L1-TLB 8-entry per core, shared by
cores in cluster

Functional Units Single Issue: 1 Integer ALU,
1 FP ALU

Branch Prediction Static

Coherence MESI

(a) Simulation configuration

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized Voltage

½ Frequency

N
or

m
al

iz
ed

 F
re

qu
en

cy

(b) Voltage-frequency relationship

Figure 4: Table showing simulation configuration parameters. The figure plots the voltage-frequency relationship for the 45nm CMOS technology node from
HSPICE simulations of an 11-stage FO4 ring oscillator.

1.5% overhead to the first-level caches, and 0.2% overhead to the
last-level caches. The cluster-cache interconnect and the shared-
L2 caches are used for intra- and inter-cluster motion respectively.
State-transfer between RF and caches is performed with core mi-
crocode that issues store instructions to the cache. Cores participat-
ing in TM do a load of the register state from the caches on demand
after re-starting.

We study three mechanisms that populate RF state to the first-
level shared cache. The lazy-write mechanism initiates RF state
copy of a core after it becomes an intra- or inter-cluster TM partic-
ipant. This scheme can incur a high RF transfer penalty for every
TM event, leading to performance losses of up to 6%. To reduce
RF transfer costs, we explore a shadow-write mechanism that op-
portunistically uses cache-idle cycles on single-register access in-
structions, to write dirty registers to the cache. While this reduces
the performance overhead to around 1%, it incurs an high RF and
L1 cache power overhead. We consider a more conservative eager-
write mechanism that initiates transfer of dirty registers following
a miss in the first-level cache. The amount of cycles available for
the eager-write depends on how long it takes for the L2 cache ac-
cess to resolve. L2 caches are often phased (serializing tag- and
data-access to conserve power), and the miss information would be
available sooner than the total latency (which may trigger TM), re-
ducing the number of cycles available for eager-writing. Our eager-
write study assumes that the L2 latency of 12 cycles is split into 7-
cycle tag-array read and a 5-cycle data-array access (obtained from
CACTI simulation). Eager write incurs a 2-3% performance loss,
with a reasonable power overhead, and all subsequent results use
this scheme. A detailed breakdown of power costs are discussed in
Section 5.5.

Inter-cluster state transfers present other latency challenges that
the TM algorithm must consider—I-cache data is lost during inter-
cluster transfer. Hence, integer and FP instruction pointers always
transfer first and initiate an instruction stream fetch in the remote
core. In summary, intra- and inter-cluster transfers incur different
costs, and the TM algorithm accounts for these costs in evaluating
transfer feasibility, and balances costs with anticipated benefits.

4. SYSTEM FRAMEWORK
As discussed in Section 3, we study thread motion on an ar-

chitecture that resembles Sun’s Rock [27] (Figure 3). Four cores,
grouped to form a cluster, share the first level I- and D-caches. We
model 16KB, 2-way per core of shared L1 caches. It uses LRU re-

placement and can sustain one load per cycle per core. A similarly
configured I-cache provides 8 bytes of instruction stream to each
core per cycle. The 2MB, 16-way, unified L2 cache is shared by all
four clusters. It uses pseudo-LRU replacement and supports 8 inde-
pendent requests simultaneously. Table 4(a) lists the architectural
parameters used to configure our simulator.

4.1 Core Power Levels
Thread motion relies on having multiple cores that vary in

power-performance capabilities. Different VF domains enable het-
erogeneous power-performance cores, and we model system con-
figurations ranging from 2 to 4 separate VF settings. We use
the term VF setting to refer to the combination of frequency and
the corresponding voltage needed to sustain the frequency. We
model the voltage-frequency relationship for the 45nm CMOS
technology node based on HSPICE simulations of an 11-stage
FO4 ring oscillator (Figure 4(b)) and estimate dynamic power with
freq ∗ volt2. This simplistic power-performance relationship is
sufficient for this study, because our primary comparison is to
coarse-grained DVFS also modeled with the same relationship.

4.1.1 VF Settings
Each VF setting requires a separate regulator to provide the volt-

age to the core (with a separate power-delivery subsystem), and a
per-core PLL to provide the frequency. For example, a four-VF
configuration would require four voltage regulators and per-core
PLLs. Generating and delivering different voltages can incur po-
tentially high costs. Hence, in CMPs, the goal is to increase per-
formance with fewer VF domains. Given the long time constants
associated with off-chip voltage regulators, this study assumes all
voltages are fixed except for an ideal scenario where both frequency
and voltage change instantaneously.

For this study, we model 2- to 4-VF configurations. All VF con-
figurations are normalized to the maximum operating frequency
and voltage (Figure 4(b)); we refer to this baseline case as hav-
ing a VF of 1. Two VF-domain configurations use a low VF of
0.5 and a high VF of 1. This provides a maximum 50% operating
range (similar to a commercial design [17]), and can best accom-
modate performance-centric and power-centric operating modes of
applications using max and min voltages respectively. The three
VF-domain configurations use frequencies of 0.5, 0.67 and 1, and
the corresponding voltages needed to sustain the frequencies. The
four VF-domain configurations use 0.5, 0.67, 0.83 and 1 VF.

307

20 40 60 80
0

5

10

15

20

25

30

35

40

45

Power Budget (%)

A
ve

ra
ge

 D
eg

ra
da

tio
n

(%
)

0.5/1 Static
0.5/0.67/1 Static
0.5/0.67/0.83/1 Static
0.5/1 TM−enabled
Static Cont VF
Ideal VF

Figure 5: Performance degradation of static and TM-enabled in several VF
settings. Ideal VF refers to non-quantized/continuous, per-core VF obtained
instantaneously at fine resolutions with no cost. Static Cont VF refers to
such VF settings obtained at coarser resolutions.

Performance and reliability of on-chip memories in
aggressively-scaled technologies are highly sensitive to the
operating voltage. While several circuit and architecture-level
solutions have been proposed to enable low-voltage operation [28],
we simplify our analysis by assuming the timing critical, shared
L1 and L2 caches all reside within the highest 1 VF domain.
Moreover, we later show that our TM implementation only uses
two VF domains (Section 5.1) with high and low frequencies of
1 and 1/2, respectively. This simple, integer clock ratio obviates
complex data-transfer circuitry and provides sufficient timing slack
to accommodate level shifter delays for requests to the cache.

4.1.2 Power Budgets
The potential benefits of thread motion are studied in the context

of different system-level power budget targets (further explained in
Section 4.3). Different power budgets can be achieved by chang-
ing the number of cores that connect to different voltage domains.
To simplify the analysis, we constrain the possible permutations of
these connections for different power budgets. Our choice of VF
configurations for a particular budget restricts the core power lev-
els to build up monotonically from low to high, until all cores are
at the maximum VF of 1. We distribute VF settings with maximum
uniformity across all clusters. For example, for a power budget
with half of the cores at high VF and half at low VF, each cluster
would have same number of high/low VF cores.

4.2 Experimental Setup
Thorough exploration of thread motion in CMP architectures re-

quires an experimental infrastructure that models core timing and
core register states, intra-cluster cache and last-level cache shar-
ing, ability to run multiple VF domains, runtime switching of core
VFs, cache contention effects, and power overheads. The starting
point for our system model is CMP$im [13], a complex pintool
that implements a cache simulator based on the Pin [19] software
binary instrumentation infrastructure. Pin serves as a functional
model providing memory references to CMP$im, and the CMP$im
cache simulator processes the incoming instruction and data trace.
CMP$im can model multiple levels of private and shared caches
and supports cache parameters such as cache sizes, access laten-

cies, sharing bandwidth and associativity. CMP$im models the
MESI coherence protocol as well as various cache replacement,
allocation, and replacement policies.

Our simulation framework extends CMP$im to perform cache
simulations of multi-programmed (MP) workloads. We also aug-
ment CMP$im with timing models of simple, in-order cores con-
figured as shown in Table 4(a). Cores have an issue width of 1 and
block on a cache miss. Cores are clock-gated when idle, resulting
in a 25% reduction of dynamic power consumption. Our simulation
environment based on CMP$im fully supports cycle-accurate mod-
eling of cores running on different VFs, modeling core register-file
state, various cluster configurations, dynamic core VF transitions,
and effects on the shared cache and memory traffic; that is, bus
conflicts and cache contention effects are modeled precisely for all
evaluated configurations and algorithms.

Simulation of MP workloads is accomplished in two steps. First,
CMP$im is run in trace-generation mode to gather traces of repre-
sentative regions for each SPEC CPU 2006 binary. We gather traces
to guarantee run repeatability and ensure fair comparison across all
evaluated configurations. We use pinpoint weights [22] obtained
using a different infrastructure to provide the representative regions
of applications. The generated traces contain 100 million highest-
weight pinpoint instructions; in addition, 300 million instructions
preceding the pinpoint region is included to warm up the caches.
Second, CMP$im is invoked in simulation mode on the collection
of traces that compose the MP experiment. Each trace initializes a
new 5-stage pipelined, in-order core.

Simulation proceeds by fetching an instruction from the trace,
feeding it to the core timing model, and playing data instructions
through the simulated cache configuration. This is repeated for the
total number of cores every cycle. MP simulation ends when all the
cores have finished executing the trace. The cores that finish early
loop back on their trace files and re-execute their pinpoint region.

4.3 Measuring Performance
In order to understand the benefits of thread motion, we will

compare the performance of machines with TM to conventional
machines with OS-driven DVFS and multiple voltage domain sce-
narios, but no motion. Given its relatively long timescales, our
analysis models OS-driven DVFS to effectively operate with static
VF settings. Simulation of different static configurations occurs in
two steps. First, the entire trace for each application is run once
to compute the overall IPC. Second, this information is used to
schedule each application to its best-matched core; that is, the high-
est IPC unscheduled application is scheduled to run on the high-
est remaining core VF. Even though this two-step process to pre-
determine optimal VF is conservative, it provides a best-case base-
line for static approaches. We model TM-enabled machines with
cost factors related to swap decisions for the two TM approaches
(time- and miss-driven TM) detailed in Section 3.1.

On multi-core systems, high non-recurring engineering cost of
design motivates using a single design for as many markets as pos-
sible, but parameterized by power budgets that lead to different per-
formance classes (laptop vs. server vs. desktop). The goal, then, is
to improve performance across a range of power budgets set by a
particular VF configuration (i.e. cluster’s combination of cores with
different heterogeneous VFs). Hence, we evaluate static and TM-
enabled configurations across a range of power budgets by mea-
suring relative performance loss. Performance loss at a particular
power budget is compared to a best-performance design that oper-
ates at the highest VF setting at all times (similar to [11]).

The last level cache (L2) resides on a separate VF domain and
accesses to it complete in fixed time [21]. We measure each appli-

308

0 20 40 60 80 1000

10

20

30

40

50

Power Budget (%)

A
ve

ra
ge

 D
eg

ra
da

tio
n

(%
)

Static
TM−enabled
Ideal VF

(a) 2 Cores Per Cluster

0 20 40 60 80 1000

10

20

30

40

50

Power Budget (%)

A
ve

ra
ge

 D
eg

ra
da

tio
n

(%
)

Static
TM−enabled
Ideal VF

(b) 4 Cores Per Cluster

0 20 40 60 80 1000

10

20

30

40

50

Power Budget (%)

A
ve

ra
ge

 D
eg

ra
da

tio
n

(%
)

Static
TM−enabled
Ideal VF

(c) 8 Cores Per Cluster

Figure 6: Effect of available VF choices on thread motion performance, using high-variability workloads.

cation’s performance loss (in all schemes) as the ratio of the extra
time taken to run the application on a particular power budget to
the time taken to run the same number of application’s instructions
with a 100% power budget (all cores at maximum VF). Running
the same number of instructions ensures that the application phases
do not bias the results. Net performance loss at each power budget,
presented as average degradation, is the sum of losses of individual
applications averaged over the total number of simulated cores.

5. RESULTS AND ANALYSIS
Thread motion enables fine-grained temporal tracking of pro-

gram behavior and, as a result, can offer benefits that are sensitive
to the type of workloads being evaluated. Furthermore, TM relies
on the differences in power-performance capabilities of cores and,
hence, can also be expected to be sensitive to both the number and
choices of available VF levels. In order to narrow the study, we
first evaluate the effects of two parameters without including TM
costs—the number of VF levels and the choice of available VFs.
We then analyze the performance in light of TM cost, compare
time- and miss-driven TM policies, study a variety of workload
configurations, and provide a breakdown of TM power overheads.

5.1 Effects of VF Quantization
Multiple voltage domains incur significant costs in terms of off-

chip regulators and power-delivery hardware. A very important
benefit of TM is that it can achieve nearly all of its benefits with
only two VF domains. To understand this effect clearly, we sim-
ulate 2 clusters of the architecture in Figure 3 using 2-, 3-, and
4-VF configurations running a combination of 8 high-variability
workloads shown in Figure 2(b). For this study, we also model an
ideal VF machine in which any application can switch to any VF it
wants instantaneously with arbitrarily fine resolution while satisfy-
ing the different power budgets. In other words, an ideal machine
could obtain any VF (without quantization effects) best suited for
the program phase. Static continuous VF is an ideal VF obtained at
coarser granularities.

Figure 5 compares thread motion with two VF levels to several
other configurations. As discussed earlier, we evaluate the con-
figurations by measuring performance loss over a range of power
budgets. For the highest power budget of 100%, all cores are at
the maximum VF and there is no performance loss. For the low-
est power budget of 12.5%, all cores are at the minimum VF, and
all configurations converge to exhibit identical performance degra-
dations. These two extreme cases are not shown in this graph.
The topmost line in the figure corresponds to a static oracle con-
figuration using two VF levels. We see that as the power budget

decreases, average degradation increases as more cores operate at
lower VF settings. The next two lower lines show that having ad-
ditional VF domains benefit the static configuration by reducing
performance degradation for a range of power budgets. The static
continuous VF, where each core operates at a continuous (non-
quantized) VF setting with oracle knowledge of the IPC of running
applications, further reduces degradation. The plot also presents
results for time-driven TM (with a TM-interval of 200 cycles) with
only 2 VF choices, and we find that it performs better than static
assignments using 3 and 4 VF choices and is nearly equivalent to
continuous static assignment. Although omitted for clarity, sim-
ulations of thread motion with 3 and 4 VF choices do not offer
performance benefits over having only 2 VF choices. Thus, thread
motion can achieve the effect of having multiple VF domains, but
with just two voltage levels, saving on costly off-chip regulators.
Note that static continuous VF is an idealized mechanism that al-
lows arbitrary selection of voltages and frequencies, but requires a
regulator and power grid for each core.

The ability to move between cores at fine granularity means that
an application could run on different quantized VF levels for ar-
bitrary amounts of time; hence, during the lifetime of the appli-
cation, it achieves an effective VF that is different from the fixed
VF choices. In this sense, thread motion achieves benefits similar
to using hardware dithering [5]. Finally, Figure 5 also compares
time-driven TM performance against an ideal dynamic VF—non-
quantized, per-core VF obtained instantaneously at 200-cycle TM-
intervals—as the best-case performance scenario for fine-grained
DVFS. This ideal VF is impossible to achieve and is only shown as
a best-case bound.

5.2 Effects of available VF choices
The second parameter we study is the sensitivity of thread mo-

tion to available VF choices. To construct various choices of core
VFs, we model 2-core, 4-core and 8-core per cluster configuration,
and disallow inter-cluster thread motion. However, to rule out ap-
plication behaviors biasing results and to correctly model the cache
contention effects, we always run 8 applications and simulate mul-
tiple clusters with a total of 8 cores. This necessitates averaging
results of multiple clusters. For example, runs from four clusters
are averaged to present the 2-core per cluster data. We continue to
use our collection of 8 high-variability workloads (shown in Fig-
ure 2(b)) for this study. For these evaluations, we dropped the 3-
and 4-VF setting choices since they do not offer performance ad-
vantages. In addition, we do not show the comparison with static
continuous, because it is similar to thread motion.

Figure 6(a) presents the average performance degradation as-

309

18 28 39 49 59 69 80 90 100
0

5

10

15

20

25

30

35

40

45

50

55

Power Budget (%)

A
ve

ra
ge

 D
eg

ra
da

tio
n

(%
)

Static
Oracle/Cache cost
Pred/No cache cost
Pred/Cache cost
Pred/RF + cache cost
Oracle/No cache cost

(a) Costs of time-driven TM

18 28 39 49 59 69 80 90 100
0

5

10

15

20

25

30

35

40

45

50

55

Power Budget (%)

A
ve

ra
ge

 D
eg

ra
da

tio
n

(%
)

Static
Oracle/Cache cost
Pred/No cache cost
Pred/Cache cost
Pred/RF + cache cost
Oracle/No cache cost

(b) Costs of miss-driven TM

Figure 7: Costs for time-driven and miss-driven TM using 8 high-variability workloads.

suming 2 cores per cluster and 2 VF levels. This small number of
cores constrains the evaluation to one core at high-VF and one core
at low-VF setting. This setting allows the applications to achieve
effective frequencies in the range between low and high by mov-
ing between the two available choices, which translates to 7.6%
less performance degradation compared to static. The left and right
most points in the figure have all low and all high cores, respec-
tively. For these power budgets, since all cores are at the same VF,
TM-enabled performance is identical to that of the static configu-
ration (these points are grayed out).

For the second processor configuration (Figure 6(b)), we observe
that TM performs better for a range of power budgets. Having
more cores provides more choices to track application variability
and improves performance. We see further improvements in the
final processor configuration with 8 cores per cluster, where more
configurations cover a wider power budget range, and performance
differences per application improves by up to 10%. Static assign-
ments, even when scheduled based on the best possible core using
an oracle knowledge of application’s IPC, fail to exploit the intra-
application variability for all cases. The results of this experiment
has an important implication—exposing more VF choices (via the
number of available cores) increases TM performance. This moti-
vates us to include inter-cluster TM evaluations in our algorithms
despite additional costs.

5.3 Time-Driven vs. Miss-Driven TM
Though time- and miss-driven TM are both fine-grained ap-

proaches, they operate on different triggers and incur different
costs. Figure 7(a) presents results for a smaller configuration (two-
cluster simulation1) of the architecture shown in Figure 3, assuming
the breakdown of all costs discussed in Section 3.2 for time-driven
TM. The two lines plot the static configuration and the TM-enabled
configuration with no cost. Each TM cost is shown as a separate bar
to isolate its effects. We follow the labeling of (prediction scheme,
with or without cache costs) to identify costs. For example, pred/no
cost bars mean that last-value prediction was used but the cache
costs were ignored. Oracle prediction isolates the effects of loss
incurred as a result of lost cache state in inter-cluster transfers. Pre-
diction with no cost isolates the effects of last-value IPC and in-

1Modeling of 4-clusters (16-cores) demands simulation of billions
of instructions, and was time-prohibitive for the sweep studies.

struction prediction (over the past sample period of 1000 cycles) on
TM benefits. Prediction with cache cost isolates the effect of both
costs and assumes instantaneous state transfer. Finally, all costs are
factored in the last bar, including the penalty due to state transfer
cycles. For the power budgets intervening the max and the min,
more TM choices exist and we see an increase in the costs. Even
accounting for all costs, for the power budget of 49%, time-driven
TM outperforms the static oracle configuration by 4.5%.

We now look at the costs for the miss-driven approach us-
ing the same set of workloads and machine configuration. Fig-
ure 7(b) breaks down all related costs. Even though miss-driven
approach uses the last-level cache miss as a TM trigger, it still uses
instruction-based prediction to evaluate inter-cluster partners (see
Section 3.2). So we observe a similar set of cost breakdowns to the
time-driven approach. As the figure shows, miss-driven TM outper-
forms time-driven TM for this set of workloads and, at the power
budget of 49%, delivers performance benefits of up to 10% over the
static configuration. However, for a higher power budget of 90%,
the large number of applications in high-VF cores seek the single
low-VF core and the transfer costs of TM make it comparable to a
static system.

5.4 Impact of Workloads
As previously discussed, TM benefits are sensitive to the be-

havior of the workload it tracks. Hence, we evaluate TM perfor-
mance with respect to four different MP-workload configurations,
which are outlined as (A) through (D) in Figure 2(b). Similar to
previous experiments, these workloads are run on two 4-core clus-
ters. Each workload result compares four configurations: the static
oracle; time-driven TM, including all costs and a TM interval of
200 cycles; miss-driven TM, including all costs; and a miss-driven
scheme with no costs and oracle assignments, to present an opti-
mistic bound. All configurations employ clock-gating on core idle
cycles.

TM benefits come from two primary factors: (1) the amount of
variability in the workload, which translates to how often applica-
tions can be managed for better system throughput; and 2) the IPC
of the applications in the workload, which translates to how much
performance benefit an application can achieve once it moves to a
high VF core. The four workload configurations that we consider
span combinations of these cases.

310

0 20 40 60 80 100
0

10

20

30

40

50

60

Power Budget (%)

A
ve

ra
ge

 D
eg

ra
da

tio
n

(%
)

Static
Time−driven
Miss−driven
MD Oracle/No cost

(a) High-variability workloads

0 20 40 60 80 100
0

20

40

60

80

Power Budget (%)

A
ve

ra
ge

 D
eg

ra
da

tio
n

(%
)

Static
Time−driven
Miss−driven
MD Oracle/No cost

(b) Mid-IPC workloads

0 20 40 60 80 100
0

20

40

60

80

100

Power Budget (%)

A
ve

ra
ge

 D
eg

ra
da

tio
n

(%
)

Static
Time−driven
Miss−driven
MD Oracle/No cost

(c) Low-variability workloads

0 20 40 60 80 100
0

20

40

60

80

100

Power Budget (%)

A
ve

ra
ge

 D
eg

ra
da

tio
n

(%
)

Static
Time−driven
Miss−driven
MD Oracle/No cost

(d) High Variability & Mid IPC

Figure 8: Average degradation for workload configurations (A) through (D) shown in Figure 2(b).

Figure 8(a) presents the results for the workload configuration
(A) in Figure 2(b) comprising 8 high-variability workloads (also
used for cost analysis). The high variability promotes a larger num-
ber of transfers (results not shown for brevity) and incurs higher
costs. However, both approaches exploit the large amount of vari-
ability in this configuration, resulting in benefits over the static con-
figuration. Miss-driven configuration performs best with up to 10%
less performance degradation, inclusive of all costs, over the static
counterpart. Since this set mostly contains low-IPC applications,
benefits come from more transfers and better utilization of high VF
cores.

Figure 8(b) presents the results for the workload configuration
(B) in Figure 2(b) comprising mid-IPC workloads (IPC range from
0.5 to 0.8). This set of workloads exemplifies the effect of VF quan-
tization on a CMP system with two fixed voltage domains of high
and low. The higher IPC of each application (compared to work-
load set (A)) results in increased gains for applications that migrate
to high VF cores; that is, each transfer to a high VF core results in a
larger number of instructions being committed compared to work-
load (A). Consequently, miss- and time-driven TM perform simi-
larly and are better than static assignments over a range of power
budgets, reducing performance degradation by up to 18%.

Figure 8(c) presents the result of running 4 copies each of two
applications that have almost no variability and high IPC—calculix
and perl.splitmail—shown in Figure 2(b) as configuration (C) on

two, 4-core clusters. While this configuration appears to not benefit
from TM, the high-IPC of each application translates into the high-
est number of committed instructions per transfer. In other words,
during the rare memory misses that do occur, TM is very effective
because it can advantageously run the unstalled application on the
high VF core. However, the number of transfers is limited, and
as can be seen from the figure, this group offers modest improve-
ments over static (up to 7.2%) compared to the other configurations
we have looked at.

Finally, Figure 8(d) presents the results of running 8 copies of
a single application that falls under both the high variability and
mid-IPC categories (configuration (D) in Figure 2(b)). This sce-
nario combines both benefits of thread motion—a large number of
transfers occur (due to the high variability) and each transfer is rel-
atively fruitful (due to the mid-IPC workloads). This represents
the best-case scenario for thread motion. TM achieves improve-
ments with degradation reducing by 15.1% to 20.5% over a range
of power budgets compared to static.

As we saw in Figure 2(a), variability is more pronounced when
examined at smaller intervals. Even though we present time-driven
TM results for 200-cycle TM intervals, we have also evaluated
coarser granularities and found that TM results over tens of thou-
sands intervals are comparable to static. At 200-cycle intervals,
TM incurs much more register transfer and cache costs as a result
of frequent thread movement and yet provides maximum benefit.

311

(A) (B) (C) (D)
0

1

2

3

4

5

Workload Configuration

R
F

P
ow

er
 O

ve
rh

ea
d

(%
)

Lazy−write Eager−write Shadow−write

(a) RF-transfer mechanisms (miss-driven TM)

(A) (B) (C) (D)
0

0.5

1

1.5

2

2.5

Workload Configuration

P
ow

er
 O

ve
rh

ea
d

(%
)

L2 Cache L1 Cache RF Chip

(b) Miss-Driven TM on workload configurations

Figure 9: Power overheads for all RF-transfer mechanisms and workload configurations shown in Figure 2(b).

5.5 Power Costs
Analysis of TM benefits is not complete without looking at the

power overheads. TM primarily incurs power overheads as a result
of: (1) increased accesses to the register files and first-level caches;
and (2) additional traffic to the L2 as a result of loss of shared first-
level cache state in inter-cluster transfers. This section analyzes
these overheads.

Our power models are based on Rock’s reported frequency and
power data [27] [16]—frequency is 2.3GHz, chip power is 250W
and core power is 10W. Our power models assume 10% of the core
power to be dynamic RF power [20]. We compute the dynamic
register power as a product of registers accessed per cycle, energy
per access and the frequency. Figure 9(a) shows the worst-case RF
power overhead for the different RF-transfer mechanisms described
in Section 3.2.3. The best performing shadow-write mechanism
also incurs high power costs. On the other hand, only writing reg-
isters from cores that participate in TM has the lowest power over-
head, but results in high delay overheads. The eager-write mecha-
nism provides the best delay-power tradeoffs.

The RF-write mechanisms aimed to speed-up intra-cluster mo-
tion resulting in additional accesses to L1 that increase L1 power
consumption. Even inter-cluster transfers affect first-level cache—
inter-cluster TM results in reduced number of hits and additional
misses to the first-level cache. In typical first-level cache imple-
mentations, the tag and data arrays are accessed simultaneously, so
the hit power is the same as the miss power. Hence, inter-cluster
TM does not change the power consumption of the L1 caches. Our
power model to calculate L1 data cache power overhead assumes
L1 power to be 15% of the core power [20].

In contrast to L1 utilization, L2 incurs additional traffic that
would increase L2 power. We assume a phased L2 implementa-
tion that trades off access latency for low power, by serializing ac-
cess to the data array following a hit in the tag-array, which results
in different hit and miss powers. Our power model assumes L2
power to be 25W, or 10% of the chip power, using data from the
cache implementation in [7] (which estimates it to be 7% of chip
power). To compute the L2 hit and miss powers, we break down
the L2 power into clock, data-array access, tag-array access, and
data-transfer power numbers using the data provided by Grodstein
et al. [7], and utilize the hits per cycle data from simulation.

Chip power for the simulated configuration is a combination of

total core power, L1 and L2 cache power, or the aggregate power of
components we model. Figure 9(b) plots the worst-case caches, RF,
and chip power overheads for all workload configurations for miss-
driven TM compared to a static configuration. Overall, the power
overhead is negligible, up to 0.75% for the entire chip across all
workload configurations analyzed. As can be seen, the workload
configuration (D) in Figure 2(b), which gains the most benefit from
TM, also incurs the highest power overhead.

6. RELATED WORK
Thread motion, a methodology for fine-grained power manage-

ment, is related to prior work on dynamic, active power manage-
ment. Isci et al. [11] propose using a global power manager to re-
evaluate core power levels every 500μs using run-time application
behavior. They evaluate different policies for global CMP power
management. Our policy to maximize the number of committed
instructions by TM is based on their MaxBIPS policy. Herbert
et al. [9] reinforce the benefits of DVFS, but observe that hard-
ware, per-core VF islands are not cost effective. Li et al. [18] con-
sider a similar L2 miss-driven policy for reducing supply voltage;
this scheme is linked into a voltage-control mechanism for certain
pieces of the processor core. Juang et al. [14] propose using coor-
dinated VF settings instead of local, per-core VF to improve power-
performance. In contrast, thread motion targets much smaller time
scales to maximize performance across different power budget con-
straints.

Core hopping, a coarser time scale application of thread motion,
has been previously proposed to combat thermal problems. Heo
et al. [8] argue that the interval between core migrations can be
smaller than typical OS context swap times for maximum benefit.
However, their ping-pong times that are still on the order of mi-
croseconds is much longer than the nanosecond granularities that
TM targets. Powell et al. [24] propose using thread migration to
prevent local hot spots that can result in chip failure. Their thread
migration frequency, proportional to thermal time constants, is or-
ders of magnitude higher than TM frequency. Shayesteh et al. [26]
propose using helper engines to reduce thread migration latencies
on CMP systems. The larger structures in the helper engines are
decoupled from the processor microcore to help cut down the cost
of state transitions during state migration. Their mechanism is one

312

possible approach to implement our methodology on systems with
non-shared caches or complex cores.

Finally, fine-grained power management techniques using volt-
age dithering [5] and using on-chip regulators to obtain fast, per-
core DVFS [15] have been previously proposed. Local voltage
dithering has been shown to handle workload variations at fine
granularities, but applying voltage dithering on an entire chip re-
sults in delays on the order of microseconds. On-chip regulators are
another promising approach to achieve fast, per-core power control.
However, it is not clear how well their on-chip regulators intended
for low-power systems can scale to higher-power system. We show
that TM achieves results similar to these other works with lower
overheads.

7. CONCLUSION
Our workload studies show that variability observed at finer

granularities is masked for larger sample sizes. This suggests a
power-management mechanism that can operate at fine time scales
can offer higher power-performance efficiency. We present thread
motion as a fine-grained, power-management technique for multi-
core systems consisting of simple, homogeneous cores capable of
operating with heterogeneous power-performance characteristics.

We show that moving threads between cores with only two VF
domains can perform nearly as well as having continuous, per-core
VF levels. Analysis of TM on the architectural configuration of
a modern processor like Rock shows that it can be highly effec-
tive. Performance benefits corresponding to reductions in average
degradation by up to 20% are observed when compared to a static,
OS-driven DVFS scheme. TM provides applications the flexibil-
ity to adapt time-varying fluctuations in computing needs to high-
and low-performance cores available. Thorough evaluations show
that TM offers benefits despite all of the penalties associated with
motion, and power overheads are negligibly small.

Acknowledgments
We are thankful to Aamer Jaleel for providing us the initial in-
frastructure, and to Carl Beckmann for his suggestions. We are
also grateful to the anonymous reviewers for their comments and
suggestions. This work is partially supported by National Science
Foundation grants CCF-0048313 and CSR-0720566. Any opin-
ions, findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the NSF.

References
[1] AMD Turion X2 Ultra Dual-Core Processor.

http://multicore.amd.com/us-en/AMD-Multi-Core.aspx.

[2] Intel Turbo Boost Technology.
http://www.intel.com/technology/turboboost/index.htm.

[3] Nehalem Microarchitecture.
http://www.intel.com/technology/architecture-silicon/next-gen/.

[4] Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture, 2008.

[5] B. Calhoun and A. Chandrakasan. Ultra-Dynamic Voltage Scaling
(UDVS) Using Sub-Threshold Operation and Local Voltage
Dithering. IEEE Journal of Solid-State Circuits, Jan. 2006.

[6] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and
Predicting Program Behavior and its Variability. In Parallel
Architectures and Compilation Techniques, 2003.

[7] J. Grodstein et al. Power and CAD considerations for the 1.75MByte,
1.2GHz L2 cache on the alpha 21364 CPU. In Great Lakes
Symposium on VLSI, 2002.

[8] S. Heo, K. Barr, and K. Asanovic. Reducing Power Density through
Activity Migration. In International Symposium on Low Power
Electronics and Design, 2003.

[9] S. Herbert and D. Marculescu. Analysis of Dynamic
Voltage/Frequency Scaling in Chip-Multiprocessors. In International
Symposium on Low Power Electronics and Design, 2007.

[10] E. Ipek, M. Kirman, N. Kirman, and J. Martinez. Core Fusion:
Accommodating Software Diversity in Chip Multiprocessors. In
International Symposium on Computer Architecture, 2007.

[11] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and M. Martonosi. An
analysis of Efficient Multi-Core Global Power Management Policies:
Maximizing Performance for a Given Power Budget. In International
Symposium on Microarchitecture, 2006.

[12] C. Isci, A. Buyuktosunoglu, and M. Martonosi. Long-Term Workload
Phases: Duration Predictions and Applications to DVFS. IEEE
Micro, 2005.

[13] A. Jaleel, R. Cohn, and C. Luk. CMP$im: Using Pin to Characterize
Memory Behavior of Emerging workloads on CMPs. In Intel Design,
Test and Technologies Conference (DTTC), 2006.

[14] P. Juang, Q. Wu, L. Peh, M. Martonosi, and D. Clark. Coordinated,
Distributed, Formal Energy Management of Chip Multiprocessors. In
International Symposium on Low Power Electronics and Design,
2005.

[15] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks. System level analysis
of fast, per-core DVFS using on-chip switching regulators. In
Symposium on High-Performance Computer Architecture, 2008.

[16] G. Konstadinidis et al. Implementation of a Third-Generation
16-Core 32-Thread Chip-Multithreading SPARC Processor. In IEEE
International Solid-State Circuits Conference, 2008.

[17] D. Krueger, E. Francom, and J. Langsdorf. Circuit Design for Voltage
Scaling and SER Immunity on a Quad-Core Itanium Processor. In
IEEE International Solid-State Circuits Conference, 2008.

[18] H. Li, C. Cher, T. N. Vijaykumar, and K. Roy. Combined circuit and
architectural level variable supply-voltage scaling for low power.
Transactions on Very Large Scale Integration Systems, 2005.

[19] C.-K. Luk et al. Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. SIGPLAN Conference on
Programming Language Design and Implementation, 2005.

[20] S. Manne, A. Klauser, and D. Grunwald. Pipeline Gating:
Speculation Control for Energy Reduction. In International
Symposium on Computer Architecture, 1998.

[21] R. McGowen et al. Power and Temperature Control on a 90-nm
Itanium Family Processor. IEEE Journal of Solid-State Circuits, Jan.
2006.

[22] H. Patil et al. Pinpointing Representative Portions of Large Intel
Itanium Programs with Dynamic Instrumentation. In International
Symposium on Microarchitecture, 2004.

[23] D. Pham et al. The Design and Implementation of a First Generation
CELL Processor. In IEEE International Solid-State Circuits
Conference, 2005.

[24] M. D. Powell, M. Gomaa, and T. Vijaykumar. Heat-and-run:
Leveraging SMT and CMP to Manage Power Density Through the
Operating System. In International Conference on Architectural
Support for Programming Languages and Operating Systems, 2004.

[25] L. Seiler, D. Carmean, E. Sprangle, et al. Larrabee: A Many-Core
x86 Architecture for Visual Computing. ACM Transactions on
Graphics, 2008.

[26] A. Shayesteh, E. Kursun, T. Sherwood, S. Siar, and G. Reinman.
Reducing the Latency and Area Cost of Core Swapping through
Shared Helper Engines. In IEEE International Conference on
Computer Design, 2005.

[27] M. Tremblay and S. Chaudhry. A Third-Generation 65nm 16-Core
32-Thread Plus 32-Scout-Thread CMT SPARC Processor. In IEEE
International Solid-State Circuits Conference, 2008.

[28] C. Wilkerson et al. Trading Off Cache Capacity for Reliability to
Enable Low Voltage Operation. In International Symposium on
Computer Architecture, 2008.

[29] S. Williams et al. Optimization of Sparse Matrix-Vector
Multiplication on Emerging Multicore Platforms. In International
Conference for High Performance Computing, Networking, Storage
and Analysis, 2007.

313

