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THIS NEW SIMULATION PARADIGM FOR MICROARCHITECTURAL DESIGN EVALUATION AND

OPTIMIZATION COUNTERS GROWING SIMULATION COSTS STEMMING FROM THE

EXPONENTIALLY INCREASING SIZE OF DESIGN SPACES. THE AUTHORS DEMONSTRATE HOW

TO OBTAIN A MORE COMPREHENSIVE UNDERSTANDING OF THE DESIGN SPACE BY

SELECTIVELY SIMULATING A MODEST NUMBER OF DESIGNS FROM THAT SPACE AND THEN

MORE EFFECTIVELY LEVERAGING THE SIMULATION DATA USING TECHNIQUES IN

STATISTICAL INFERENCE.

......Microarchitectural design space
exploration is often inefficient and ad hoc
owing to the significant computational costs
of current simulator infrastructures. Al-
though simulators provide insight into
application performance for a broad range
of microarchitectural designs, the inherent
costs of modeling microprocessor execution
result in long simulation times. These
simulation costs are further exacerbated for
multicore, multithreaded architectures,
which significantly contribute to exponen-
tially increasing design space sizes. Poten-
tially, a designer might perform mp simula-
tions for a design space of p parameters,
each of which might take one of m values.
Designers circumvent these challenges by
constraining the design space using param-
eter subsets (p) or reducing the design space
resolution (m). However, by subjectively
determining these constraints at the study’s
outset on the basis of experience or in-
tuition, the designer risks obtaining conclu-
sions that simply reinforce prior inclinations
and thereby limit the study’s value.

In conjunction with design space growth,
designers are increasingly differentiating
their market segments and targeting differ-
ent metrics on the basis of each segment’s
priorities—for example, single-thread laten-
cy, aggregate throughput, or energy. These
trends will lead to increasing diversity in
the set of designs considered interesting and
viable for implementation. For example,
the Intel Core, IBM Power 5, and Sun
UltraSparc T1 inhabit very different parts
of the design space, yet each was considered
viable for implementation. This trend to-
ward increasing design diversity will require
tractable techniques to quantify trends
across comprehensive design spaces, so that
designers can compare and evaluate options
from very different parts of a space.

These challenges in microarchitectural
design motivated our formulation of a new
simulation paradigm. By this paradigm,
designers will achieve a more comprehen-
sive understanding of the design space by
selectively simulating a modest number of
designs from that space and then more
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efficiently leveraging the simulation data
using techniques in statistical inference.
The paradigm begins with a comprehensive
design space definition that considers many
high-resolution parameters simultaneously.
Given this design space, we apply tech-
niques in spatial sampling to obtain a small
fraction of design points for simulation.
Spatial sampling lets us decouple the high
resolution of the design space from the
number of simulations required to identify
a trend within that design space. Finally,
we construct regression models using these
sparsely sampled simulations to enable
prediction for metrics of interest. These
models’ predictive ability and computa-
tional efficiency enable new capabilities in
microarchitectural design optimization.

This tutorial details each of the three
elements in the simulation paradigm. We
define a large, high-resolution design space of
nearly one billion points and evaluate
sampled points within this space using
cycle-accurate simulation. We describe the
synergies between spatial sampling and exist-
ing techniques for controlling simulation
costs. We propose performing uniform at
random (UAR) design sampling for simula-
tion, and we compare this approach to several
alternatives. We show how to perform spline-
based regression, using several supporting
statistical analyses to produce robust, efficient
models. To illustrate the derivation more
concretely, we interleave code and scripts
from R, an open-source software environ-
ment for statistical computing. These exam-
ple scripts and data sets are available online
for download (www.seas.harvard.edu/
,bclee/publications.html). Overall, we show
that regression models are accurate for
predicting microarchitectural design metrics
and applicable to practical design optimiza-
tion.

Simulation framework
We use Turandot, a generic and param-

eterized, out-of-order, superscalar processor
simulator.1 Turandot is enhanced with
PowerTimer to obtain power estimates
based on circuit-level power analyses and
resource utilization statistics.2 Turandot’s
modeled baseline architecture is similar to
the current Power4 and Power5 architec-

tures. The simulator has been validated
against both a Power4 register-transfer-level
(RTL) model and a hardware implementa-
tion. This simulator implements pipeline
depth performance and power models on
the basis of prior work.3 Power scales
superlinearly as pipeline width increases,
using scaling factors derived for an archi-
tecture with clustered functional units.4

Cache power and latencies scale with array
size according to Cacti.5 We do not leverage
any particular feature of the simulator in
our models and our framework can gener-
ally be applied to other simulation frame-
works with similar accuracy.

Benchmark suite
We consider SPECjbb, a Java server

benchmark, and eight computation-
intensive benchmarks from SPEC2k
(ammp, applu, equake, gcc, gzip, mcf,
mesa, and twolf). We report experimental
results based on PowerPC traces of these
benchmarks. The SPEC2k traces we used in
this study were sampled from the full
reference input set to obtain 100 million
instructions per benchmark program.6 We
performed systematic validation to compare
the sampled traces against the full traces to
ensure accurate representation. Our bench-
mark suite is representative of larger suites
frequently used in the microarchitectural
research community.7 We do not leverage
any particular benchmark feature in model
formulation, and our framework is generally
applicable to other workloads with similar
accuracy.

Design space
The first element of the simulation

paradigm is the definition of the design
space. This tutorial demonstrates spatial
sampling and regression modeling for the
design space described in Table 1. Param-
eters within a set are varied together to
avoid fundamental design imbalances. The
range of values considered for each param-
eter group is specified by a set of values, S1,
…, S12. The Cartesian product of these sets,

S ~ P12
i~1Si,

defines the entire design space. The cardi-
........................................................................
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nality of this product is |S | 5 9.38 3 108,
or approximately one billion design points.
Fully assessing the performance for each of
the nine benchmarks on these configura-
tions would further scale the number of
simulations.

Spatial sampling
Spatial sampling, the second part of our

proposed simulation paradigm, decouples
the size of the design space from the
number of simulations required to un-
derstand design trends by selectively simu-
lating a modest number of points within the
space.

Spatial and temporal synergies
Prior efforts to control simulation costs

have focused primarily on temporal sam-
pling. These techniques obtain samples
from instruction traces in the time domain,
reducing the costs per simulation by

reducing the size of simulator inputs.
Eeckhout et al. study profiling techniques
to simplify workloads in microarchitectural
simulation.8 Nussbaum and Smith examine
similar approaches for superscalar and
symmetric multiprocessor simulation.9

Both profile benchmarks to construct
smaller, synthetic benchmarks with similar
characteristics. Sherwood and Wunderlich
separately propose techniques to identify
representative simulation points within an
instruction trace to reduce the total
number of instructions simulated.10,11 Tem-
poral sampling effectively decouples the
number of simulated instructions from the
program length to reduce per simulation
costs. However, it does not impact the
number of simulations required to identify
trends within a large design space. This
limitation often constrains design space
exploration since space sizes increase expo-
nentially.

Table 1. Design space; i::j::k denotes a set of possible values from i to k in steps of j.

Set Parameters Measure Range |Si |

S1: Depth Depth FO4* 9::3::36 10

S2: Width Width Instruction bandwidth 4,8,16 3

Load and store reorder queue Entries 15::15::45

Store queue Entries 14::14::42

Functional units Count 1,2,4

S3: Physical registers General-purpose Count 40::10::130 10

Floating-point Count 40::8::112

Special-purpose Count 42::6::96

S4: Reservation stations Branch Entries 6::1::15 10

Fixed-point and memory Entries 10::2::28

Floating-point Entries 5::1::14

S5: Instruction L1 cache I-L1 cache size log2 (entries) 7::1::11 5

S6: Data L1 cache D-L1 cache size log2 (entries) 6::1::10 5

S7: L2 cache L2 cache size log2 (entries) 11::1::15 5

L2 cache latency Cycles 6::2::14

S8: Control latency Branch latency Cycles 1,2 2

S9: Fixed-point latency ALU latency Cycles 1::1::5 5

FX-multiply latency Cycles 4::1::8

FX-divide latency Cycles 35::5::55

S10: Floating-point latency FPU latency Cycles 5::1::9 5

FP-divide latency Cycles 25::5::45

S11: Load/store latency Load and store latency Cycles 3::1::7 5

S12: Memory latency Main-memory latency Cycles 70::5::115 10................................................................................................................................................................................................................
* FO4: fan-out of four delays per pipeline stage.
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To control exponentially
increasing design space
sizes, we must therefore
supplement temporal sam-
pling with spatial sampling,
an orthogonal technique
that samples points from
the design space for simu-
lation. Figure 1 illustrates
the combination of these
techniques for regression
model construction. Spatial
sampling also mitigates the
intractability and inefficien-
cies of traditional tech-
niques that sweep design
parameter values and ex-
haustively simulate all points
defined within a constrain-
ed space. By decoupling
the size of the space from
the number of simulations
required to extract design
trends, spatial sampling
enables the study of larger,
higher-resolution design
spaces. Specifically, this technique lets us
consider many design parameters simulta-
neously, and each parameter can assume
many different values.

Uniformly random sampling
We propose sampling designs uniformly

at random from the design space S. This
approach provides observations drawn from
the full range of parameter values. An
arbitrarily large number of values can be
included in each parameter’s range because
the number of simulations is decoupled
from parameter resolution. Furthermore,
UAR sampling does not bias simulated data
toward particular designs. It produces, on
average, equal representation for each
parameter value in the set of sampled
designs.

Suppose we treat the designs for which
responses are not simulated as missing data
from a full data set with all |S | simulations.
Then UAR sampling ensures the simula-
tions are missing completely at random
(MCAR). Under MCAR, data elements
are missing for reasons unrelated to any
characteristic or response of the design. In

this context, the fact that a design point is
unobserved is unrelated to the design’s
performance, power, or configuration.

In contrast, informative missing describes
the case when elements are more likely to be
missing if their responses are systematically
higher or lower. For example, simulator
limitations can prevent data collection for
very low-performance architectures, and
a configuration’s ‘‘missingness’’ correlates
with its performance. In such cases, the
missingness is not ignorable, and we must
formulate an additional model to predict
whether the simulator can observe a design
point. With UAR sampling from the design
space, we ensure that observations are
MCAR and so avoid such modeling com-
plications.

We construct regression models using
1,000 design space samples. Each sampled
design is simulated for every benchmark.
Simulator-reported performance and power
numbers provide the data necessary for the
regression model construction. Although we
use UAR-obtained samples from the design
space, we also survey several alternative
sampling strategies.

Figure 1. Simulation paradigm: temporal and spatial sampling reduces per-simulation costs

and number of required simulations.
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Alternative sampling strategies
Researchers have applied several other

sampling strategies to increase the predictive
accuracy of machine-learning models (such
as neural networks) for the microarchitec-
tural design space. Although we consider
spline-based regression models, these vari-
ous sampling strategies are broadly applica-
ble to predictive modeling. These alterna-
tives to UAR generally increase sampling
coverage of the design space or emphasize
samples considered more important to
model accuracy.

N Weighted sampling is a strategy for
emphasizing samples in particular de-
sign regions given simulated samples
from the broader space. This tech-
nique weights emphasized samples to
increase their influence during model
training. Weighted sampling can be
used to improve model accuracy for
design space regions known to exhibit
greater error.

N Regional sampling also emphasizes
samples from particular design regions
given samples from the broader space.
Instead of weighting, this approach
specifies a region of interest and
excludes undesired samples during
model training. Regional sampling
can be used to construct strictly
localized models from UAR-collected
samples. This approach might be
necessary if regions of interest are
unknown prior to sampling.12

N Intelligent and adaptive sampling esti-
mate model error variances for each
sampled design. Samples with larger
variances are likely poorly predicted,
and including such samples for
model training could improve accu-
racy. These samples are iteratively
added to the training set, with each
iteration choosing a sample that has
a large error variance and that is the
most different from those already
added.13

N Latin hypercube-sampling and space-
filling techniques seek to maximize
design space coverage. Hypercube
sampling guarantees each parameter
value is represented in the sampled

designs. Space-filling metrics are used
to select the most uniformly distrib-
uted sample from the large number of
hypercube samples that exist for any
given design space.14

Although these techniques seek to max-
imize design space coverage and improve
the accuracy of models constructed from the
resulting samples, they are also more
complex and computationally expensive
than UAR sampling. Identifying samples
for inclusion in regional sampling requires
computing Euclidean distances between all
collected samples, an expensive operation
that must be performed for each region of
interest. While UAR sampling is completely
parallel, adaptive sampling introduces
a feedback loop that limits this parallelism.
Hypercube sampling and space filling
guarantee sample properties that are only
approximated by UAR sampling, but the
trade-off between complexity and model
accuracy is still an open question. Collec-
tively, these sampling strategies provide
options for improving the accuracy of the
models constructed with the samples. We
have found, however, that UAR sampling
provides the basis for sufficiently accurate
models and comprehensive design optimi-
zation.

Regression modeling
Now we turn to the background for

relevant statistics and regression theory. The
statistically rigorous derivation of micro-
architectural performance and power mod-
els emphasizes the role of domain-specific
knowledge when specifying the model’s
functional form, leading to models consis-
tent with prior intuition about the design
space. Furthermore, statistical significance
testing prunes unnecessary and ineffective
predictors to improve model efficiency.
Specifically, we construct models with the
following steps:

N Hierarchical clustering. Clustering ex-
amines correlations between potential
predictors and enables elimination of
redundant predictors. Predictor prun-
ing controls model size, thereby re-
ducing the risk of overfitting and
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improving model efficiency during
formulation and prediction.

N Association analysis. Scatterplots quali-
tatively capture approximate trends of
predictor-response relationships, re-
vealing the degree of nonmonotonicity
or nonlinearity. Scatterplots with low
response variation as predictor
values change may suggest predictor
insignificance, enabling further prun-
ing.

N Correlation analysis. Correlation coef-
ficients quantify the relative strength
of predictor-response relationships ob-
served in the scatterplots of association
analysis. These coefficients impact our
choice in nonlinear transformations
for each predictor.

N Model specification. We use domain-
specific knowledge to specify pre-
dictor interaction. We use correlation
analysis to specify the degree of
flexibility in nonlinear transforma-
tions. Predictors more highly corre-
lated with the response require more
flexibility because any lack of fit for
these predictors will more greatly
affect overall model accuracy. Given
the model’s functional form, least-
squares optimization fits the regres-
sion coefficients.

N Assessing fit. Multiple-correlation sta-
tistic R2 quantifies the fraction of
response variance captured by the
model’s predictors. Larger R2 suggests
a better fit to training data. Normality
and randomness assumptions for
model residuals are validated using
quantile-quantile plots and scatter-
plots. Finally, predictive ability is
assessed by predicting performance
and power for a set of randomly
selected validation points.

This derivation assumes two sets of data
are available: a sizable training set and
a smaller validation set. Both data sets are
assumed to be sampled UAR from the
design space and evaluated via detailed
microarchitectural simulations. Determin-
ing the required number of samples to
achieve a particular level of accuracy prior to
model construction is difficult. The amount

of required training data likely depends on
the roughness of the design topology as well
as the complexity of relationships between
design parameters and metrics of interest.
Since these effects are largely unknown
a priori, the model derivation may proceed
iteratively. If the models obtained from
a given training set are inaccurate or biased,
we may collect additional training data to
improve sample resolution or extend design
space boundaries to reduce extrapolation
errors when predicting designs near existing
boundaries. The derivation process is then
repeated with additional iterations as nec-
essary. In practice, however, very few
iterations are necessary if samples and
design spaces are specified conservatively
(that is, large training sets, comprehensive
design spaces).

Preliminaries
We use R, an open-source software

environment for statistical computing, to
script and automate statistical analyses.
Within this environment, we use the Hmisc
and Design packages implemented by
Harrell.15 Sources, binaries, and documen-
tation for R are available from the Com-
prehensive R Archive Network (http://
www.r-project.org). Manuals providing
a broad introduction to R commands are
also available online at the R-project Web
site. This tutorial shows how to implement
regression techniques using the R statistical
computing package, and how to interpret
the resulting data and figures. Before
beginning the regression modeling process
we load necessary libraries and preprocess
simulation data to be used for model
training.

Implementation. We first load the necessary
libraries for regression and graphics support.
The Hmisc and Design pack-
ages provide support for nonlinear regres-
sion modeling, and the lattice library
provides support for trellis graphics. We use
read.table to read simulated data
residing in a tab-delimited text file (sep)
with column headers (header). The data
sets for model construction and validation
are placed in separate data frames (da-
ta_*.df), a structured data type that
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enables named fields. Field names are
extracted from the text files’ column names
and are accessed with the $ operator.

For example, we read two files containing
data for model training (data_model.
txt) and validation (data_valid.
txt). Suppose each file contains three
columns headed by column names of
depth, width, and bips. We can then
extract the column of performance data by
invoking data_model.df$bips. We
assume this data set contains simulator-
reported performance and power values for
the design parameters of Table 1, and
application characteristics (such as cache
miss rates).

## Load Libraries and Data

library(Hmisc, T);

library(Design, T);

library(lattice);

data_model.df5read.table(

file 5 ‘‘data_model.txt’’,

sep 5 ‘‘\t’’, header 5 T);

data_valid.df5read.table(

file 5 ‘‘data_valid.txt’’,

sep 5 ‘‘\t’’, header 5 T);

## Data Description

## Use information about

## data distribution to

## set options for other

## Design, Hmisc functions

describe(data_model.df);

dd,5datadist(data_model.df);

options(datadist5’dd’);

Analysis. Invoking the describe function
provides summary statistics of variables in
the data frame. The following summary for
performance, bips, specifies the number
of observations (2,000, none missing, all
unique). The mean and various quantiles
(0.05 to 0.95 in increments of 0.05) provide
a sense of the data distribution. For
example, 10 percent of simulated bips in
the training data are less than or equal to
0.357. In this case, the mean is close to the
median, suggesting a symmetric distribu-
tion. Finally, the lists of ‘‘lowest’’ and
‘‘highest’’ values report five outliers at both
extremes.

bips

n missing unique Mean

2000 0 2000 0.764

.05 .10 .25 .50

0.261 0.357 0.497 0.712

.75 .90 .95

0.977 1.260 1.418

lowest: 0.114 0.119 0.120

0.123 0.128

highest: 2.106 2.135 2.298

2.465 2.809

Hierarchical clustering
Data clustering classifies N data elements

into clusters according to a measure of
similarity represented by a symmetric N 3

N matrix, S, where S(i, j) quantifies the
similarity between data elements i and j.
Hierarchical clustering is an iterative ap-
proach that identifies successive clusters on
the basis of previously identified clusters.
Specifically, the clustering algorithm imple-
ments the following steps:

N Initialize. Assign each element to its
own cluster to obtain N single-element
clusters.

N Merge. Combine the most similar pair
of clusters into a single cluster.

N Iterate. Repeat the merge step until
obtaining one N-element cluster.

The similarity between two clusters A and
B is the maximum similarity between
elements of each cluster: max{S(x, y) : x M
A, y M B}. We use the squared correlation
coefficient to quantify the similarity of two
variables, enabling the user to identify
potential redundancy in the data set. If
multiple predictors are highly correlated,
a single representative predictor may capture
the cluster’s impact on the response. Simi-
larly, if multiple responses are highly corre-
lated, a single representative response may be
modeled, because correlated responses will
likely scale with the modeled response.

Pruning predictors is important to control
model size, not only by controlling the
number of predictors, but also by controlling
the number of potential interactions between
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predictors. Smaller models are preferable
because they reduce the number of sampled
observations required for model formulation.
Several studies that validated models on
independent data sets have shown that a fitted
regression model is likely reliable (without
overfitting) when the number of samples is
20 times the number of model terms.15

Implementation. We perform clustering with
varclus on the potential predictors and
responses, specifying variables and the data
frame where the variables are defined.

## Hierarchical Clustering

v5 varclus(, (depth + width
+ phys_reg + resv

+ mem_lat + ls_lat

+ ctl_lat + fix_lat

+ fpu_lat + d2cache_lat

+l2cache_size + icache_size
+ dcache_size
+il1miss_rate+il2miss_rate
+dl1miss_rate+dl2miss_rate
+ br_rate + br_stall

+ br_mis_rate

+stall_inflight+stall_dmissq
+ stall_cast
+stall_storeq+stall_reorderq
+ stall_resv + stall_rename
+ bips + base_bips),

data 5 data_model.df);

print(v);

trellis.device(‘‘pdf’’,

file5‘‘varclus_plot.pdf’’);

plot(v);

dev.off();

The , operator specifies a relationship
between x , y + z, where x is the response
and y and z are the predictors. For
varclus, no response is needed, and the
sum of terms on the right-hand side says we
want to examine pairwise correlations in
a similarity matrix. We correlate various
design parameters ranging from pipeline
depth to cache sizes. For illustrative pur-
poses, we also examine application char-
acteristics such as cache miss rates and
sources of pipeline stalls when the applica-
tions run on a baseline Power4-like archi-
tecture. Lastly, we specify the data frame in

which all of these variables are defined
(data5data_model.df).

Storing the clustering results to v lets us
print the similarity matrix. The print(v)
command will produce a p 3 p matrix,
where p is the number of predictors, and each
entry contains pairwise correlation coeffi-
cients between variables. We can more easily
observe the correlations between variables in
a clustering figure, which we generate by
creating a trellis device with the trel-

lis.device function. We close the
device with the dev.off function.

Analysis. Figure 2 presents the results of
hierarchical clustering with correlation coef-
ficients used as a similarity metric (larger r2

indicates greater correlation). The level at
which clusters connect indicates their degree
of similarity. L1 and L2 misses due to
instruction cache accesses are highly corre-
lated. Separately examining the raw data, we
find the absolute number of L2 cache misses
from the instruction probes to be negligible,
and we eliminate il2miss_rate from
consideration. Similarly, the branch rate is
highly correlated with the number of
branch-induced stalls, and we eliminate
br_stall.

Pipeline depth is highly correlated with
latency, because we scale the original
functional-unit latencies with depth. Be-
cause final latencies are a function of
original latencies and pipeline depth, we
choose to keep these original latency
variables. Including both predictors lets us
differentiate the performance impact of
individual functional-unit latency changes
from the global latency changes as depth
varies. However, if we later determine these
effects to be insignificant, we could remove
these extra latency parameters to improve
model efficiency. Similarly, we keep both
the data L1 cache miss rate and the baseline
performance predictors to differentiate
cache performance from global perfor-
mance.

Association analysis
Scatterplots qualitatively represent the

association between variables. Such plots
are useful for examining associations be-
tween predictors and responses, revealing

........................................................................

MAY–JUNE 2007 81



potential nonmonotonicity or nonlinearity.
Scatterplots could quickly identify more
significant predictors by showing, for ex-
ample, a clear monotonic relationship with
a response. Conversely, plots that exhibit
low response variation despite a changing
predictor value might suggest predictor
insignificance. Overall, scatterplots let the
user understand the parameter space quickly
and at a high level.

Implementation. The summary function
takes a relationship specified by the ,
operator. For example, bips , depth +
width + phys_reg + resv says we
wish to consider the relationship between
performance and the four specified design
parameters. The summary function di-
vides the predictor domain into intervals.
For each interval, it computes the average
response of all samples in the interval. The
following commands illustrate these com-
mands for our data set.

## Association Analysis

s 5 summary(bips , depth

+ width + phys_reg

+ resv,

data 5 data_model.df)

print(s);

trellis.device(‘‘pdf’’,

file5‘‘assoc_plot.pdf’’);

plot(s);

dev.off();

Analysis. Invoking the print function
produces the data table of Figure 3a,

relating predictor intervals to the response.
For example, pipeline depth takes a value
between 9 and 15 FO4 delays per stage
for 1,213 of 4,000 samples. The average
performance for these designs is 0.865 bil-
lion instructions per second. Figure 3b
shows this data in scatterplot form, illus-
trating strong monotonic relationships be-
tween performance and pipeline dimen-
sions. The register file size appears to
have a significant but nonlinear relation-
ship with performance. In contrast, the
number of entries in reservation stations
seems to have a negligible performance
impact.

Correlation analysis
Although we observe qualitative associa-

tions between performance and parameter
values using scatterplots, we would also like
to quantify the strength of these associa-
tions. Correlation coefficients are a common
metric for quantitatively assessing the
strength of empirically observed relation-
ships. Pearson’s correlation coefficient be-
tween two random variables is computed
in the following equation, where X and
Y are random variables with expectations
mx and my and standard deviations sx

and sy:

r ~
E X { mxð Þ Y { my

� �� �
sxsy

ð1Þ

When the distribution of X and Y are
unknown, nonparametric statistics can be

Figure 2. Hierarchical clustering: The level at which clusters connect indicates their degree of similarity. Spearman r2 is

a rank-based measure of correlation.
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more robust. In particular, we prefer to use
the Spearman rank correlation coefficient
rsp to quantify association independently of
variable distribution. The computationally
efficient approximation requires only di, the
difference in ordinal rank of xi in X and yi in
Y. Suppose X 5 (x1, x2, …, xN) and Y 5

(y1, y2, …, yN). Compute the rank of xi in X,
and the rank of yi in Y. Spearman rank
correlation computes a coefficient using the
N differences in rank:

rsp ~

PN
i~1 xiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i~1 x2
i

PN
j~1 y2

j

q

& 1 { 6
XN

i~1

d2
i

N N2 { 1ð Þ

 ! ð2Þ

Implementation. Given a predictor-response
relationship, the spearman2 function
computes the squared Spearman rank
correlation coefficient. Specifically, we com-
pute the correlation of performance (left-

hand side) against each predictor (right-
hand side) of the relationship. For example,
spearman2(bips , depth, data

5 data_model.df) computes the
Spearman rank correlation between perfor-
mance and pipeline depth. These coeffi-
cients may be printed and plotted.

## Correlation Analysis

sp 5 spearman2(bips ,
(depth + width

+ phys_reg + resv

+ mem_lat+ ls_lat

+ ctl_lat + fix_lat

+ fpu_lat + d2cache_lat

+l2cache_size +icache_size
+ dcache_size

+il1miss_rate+dl1miss_rate
+ dl2miss_rate

+ br_rate + br_mis_rate

+stall_inflight+stall_dmissq
+stall_cast+stall_storeq
+stall_reorderq+stall_resv
+ stall_rename + bips

Figure 3. Association analysis: data table produced by the R print function, summarizing

the range of parameter values (second column), number of samples in each range (third

column), and average performance of these samples (fourth column) (a), and scatterplots

visualizing the same data (b).
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+ base_bips),

data 5 data_model.df);

print(sp);

trellis.device(‘‘pdf’’,

file5‘‘spearman_plot.pdf’’);

plot(sp);

dev.off();

Analysis. Figure 4 plots the nonmonotonic
generalization of the Spearman rank correla-
tion coefficient for each of the prespecified
predictor variables. This information will
guide our choice of the number of spline
knots when specifying the functional form of
the regression model. A greater number of
spline knots provides greater flexibility and
potentially better model fit. A lack of fit for
predictors with higher r2 will have a greater
negative impact on performance prediction.
For architectural predictors, a lack of fit will
be more consequential (in descending order
of importance) for width, depth, physical
registers, functional-unit latencies, cache
sizes, and reservation stations.

Application characteris-
tics are the most highly
correlated variables and are
likely the primary determi-
nants of performance. For
this reason, we choose to
formulate one model per
benchmark in which these
characteristics become in-
variant and may be
dropped from the model
specification. Given a par-
ticular architecture, perfor-
mance varies significantly
across applications, de-
pending on their sources
of bottlenecks. Keeping
the application constant in
the model eliminates this
variance. Thus, per-bench-
mark models let us more
effectively model perfor-
mance because they consid-
er only the microarchitec-
tural impact on perfor-
mance.

Model specification
We apply regression modeling tech-

niques to obtain empirical estimates for
metrics of interest efficiently. We apply
a general class of models in which a re-
sponse is modeled as a weighted sum of
predictor variables plus random noise.
Because basic models linear in the pre-
dictors might not adequately capture
nuances in the response-predictor relation-
ship, we also consider more advanced
techniques to account for potentially non-
linear relationships.

Notation. For a large universe of interest,
suppose we have a subset of n observations
for which values of the response and
predictor variables are known. Let y 5 y1,
…, yn denote the vector of observed
responses. For a particular point i in this
universe, let yi denote its response variable
and let xi 5 xi,1, …, xi,p denote its p
predictors. These variables are constant for
a given point in the universe. Let b 5 b0,
…, bp denote the corresponding set of
regression coefficients used in describing the

Figure 4. Correlation analysis: plots squared Spearman rank correlation coefficients for each

parameter and characteristic.
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response as a linear function of predictors
plus a random error ei, as shown in the
following equation:

f yið Þ~ bg xið Þz ei

~ b0 z
Xp

j~1

bjgj xij

� �
z ei

ð3Þ

Mathematically, bj can be interpreted as the
expected change in yi per unit change in the
predictor variable xi,j. The ei are assumed to
be independent random variables with zero
mean and constant variance; E(ei) 5 0 and
Var(ei) 5 s2.

Transformations f and g 5 g1, …, gp can
be applied to the response and predictors,
respectively, to improve model fit by
stabilizing a nonconstant error variance or
accounting for nonlinear correlations be-
tween the response and predictors.

Fitting a regression model to observations,
by determining the p + 1 coefficients in b,
enables response prediction. The method
of least squares is commonly used to identify
the best-fitting model for a set of observa-
tions by minimizing the sum of squared
deviations between the predicted responses
given by the model and the actual observed
responses. Thus, using the least-squares
method, we find the p + 1 coefficients to
minimize S(b) by solving a system of p + 1
partial derivatives of S with respect to bj ,
j M [0, p]. The solutions to this system
are estimates of the coefficients in Equa-
tion 3:

S b0, . . . ,bp

� �
~

Xn

i~1

yi { b0 {
Xp

j~1

bjxij

 !2

Interaction. In some cases, the effect of
two predictors x1 and x2 on the response
cannot be separated; the effect of x1 on y
depends on the value of x2, and vice versa.
We can model the interaction between two
predictors by constructing a third predictor,
x3 5 x1x2, to obtain y 5 b0 + b1x1 + b2x2 +
b3x1x2 + e. Modeling predictor interactions
in this manner makes it difficult to interpret

b1 and b2 in isolation. After simple
algebraic manipulation to account for
interactions, we find b1 + b3x2 is the
expected change in y per unit change in x1

for a fixed x2.

Nonlinearity. Bacic linear regression often
assumes that response behaves linearly in all
predictors. This assumption is often too
restrictive, and several techniques for cap-
turing nonlinearity can be applied. The
most simple of these techniques is a poly-
nomial transformation on predictors sus-
pected of having a nonlinear correlation with
the response. However, polynomials have
undesirable peaks and valleys. Furthermore,
a good fit in one region of the predictor’s
values can unduly affect the fit in another
region of values. For these reasons, we
consider splines a more effective technique
for modeling nonlinearity.

Spline functions are piecewise polyno-
mials used in curve fitting. The function is
divided into intervals defining multiple
different continuous polynomials with end-
points called knots. The number of knots
can vary, depending on the amount of
available data for fitting the function, but
more knots generally lead to better fits. The
following equation gives a restricted cubic
spline on x with k knots t1, …, tk, where j 5

1, …, k – 2:16

y ~ b0 z b1x1 z b2x2 z . . .

z bk{1xk{1

ð5Þ

x1 ~ x ð6Þ

xjz1 ~ x{tj

� �3

z
{ x { tk{1ð Þ3z

tk {tj

� �.
tk {tk{1ð Þz x{tkð Þ3z

tk{1 { tj

� ��
tk { tk{1ð Þ ð7Þ

Each variable xi in Equation 5 is given by
either Equation 6 or 7. Equation 7 imple-
ments a piecewise cubic polynomial where ti
are knot locations and the + subscript denotes
the positive part of an expression. For
example, (x – t)+ equals x – t if x – t
is greater than zero and equals zero otherwise.
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We use restricted cubic splines because
linear splines can be inadequate for complex,
highly curved relationships. Splines of
higher-order polynomials can offer better
fits.15 Unlike linear splines, cubic splines can
be made smooth at the knots by forcing the
first and second derivatives of the function to
agree at the knots. However, cubic splines
can behave poorly in the tails before the first
knot and after the last knot.16 Restricted
cubic splines that constrain the function to
be linear in the tails are often better behaved.

Figure 5 is a schematic illustration of
a restricted cubic spline with five knots and
linear tails. The choice and position of
knots are variable parameters when speci-
fying nonlinearity with splines. Placing
knots at fixed quantiles of a predictor’s
distribution is a good approach in most
data sets, ensuring a sufficient number of
points in each interval.16 In practice, five
knots or fewer are generally sufficient for
restricted cubic splines. Smaller data sets may
require fewer knots. As the number of knots
increases, flexibility improves at the risk of
overfitting the data. In many cases, four
knots offer an adequate fit of the model and
a good compromise between flexibility and
loss of precision from overfitting.

Implementation. We specify a regression
model, predicting performance from various
microarchitectural design parameters. We
specify restricted cubic splines using the
rcs function, which takes as inputs the
predictor and the number of knots. Each
cubic spline must use at least three knots.
Predictors with greater performance correla-
tions are assigned a greater number of knots.

The %ia% operator allows restricted inter-
actions between cubic splines by removing
doubly nonlinear terms in the polynomial
product. This operator is necessary to control
the number of terms in a model with many
polynomial interactions.

We draw on domain-specific knowledge
to specify interactions. Pipeline depth likely
interacts with cache sizes that impact hazard
rates. A smaller L2 cache leads to additional
memory hazards in the pipeline. These
hazards affect, in turn, instruction through-
put gains from pipelining. Thus, their joint
impact must also be modeled. In a similar
fashion, we expect pipeline width to interact
with the register file. We also expect the
memory hierarchy to interact with adjacent
levels (for example, L1 and L2 cache size
interaction). Although we capture most
relevant interactions, we do not attempt to
capture all significant interactions via an
exhaustive search of predictor combina-
tions. The model’s accuracy suggests that
this high-level representation is sufficient.

We apply a sqrt transformation on the
bips response and specify its relationship
to design parameters. The resulting model
specification is assigned to m. We use the
ordinary least-squares ols function to
determine regression coefficients from the
specification m and the training data. Least
squares returns a fitted model f. We obtain
a power model g from the performance
model f by updating it with a log trans-
formation on the power response and
leaving the right side of the relationship
unchanged, as indicated by the ‘‘.’’ (period)
in g5 update(f, log(power), .).
We use a standard variance-stabilizing
sqrt transformation on performance to
mitigate any model biases and a log

transformation on power to capture expo-
nential trends in power as parameters (for
example, depth) vary. Both sqrt and
log transformations are standard in the
statistics literature and are typically applied
to more tractably and effectively analyze
data with large values in absolute terms.
The following code segment illustrates
these commands for our data set.

## Model Specification and Fit

m 5 (sqrt(bips) ,

Figure 5. Restricted cubic-spline schematic.
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(## first-order effects

rcs(depth,4) + width

+ rcs(phys_reg,4)

+ rcs(resv,3)

+ rcs(mem_lat,3)

+ fix_lat

+ rcs(fpu_lat,3)

+ rcs(l2cache_size,3)

+ rcs(icache_size,3)

+ rcs(dcache_size,3)

## second-order effects

## interactionsofpipe

## dimensions and

## in-flight queues

+ width %ia% rcs(depth,4)

+ rcs(depth,4)

%ia% rcs(phys_reg,4)

+ width

%ia% rcs(phys_reg,4)

## interactions of depth

## and hazards

+ width

%ia% rcs(icache_size,3)

+ rcs(depth,4)

%ia%rcs(dcache_size,3)

+ rcs(depth,4)

%ia%rcs(l2cache_size,3)

## interactions in

## memory hierarchy

+ rcs(icache_size,3)

%ia% rcs(l2cache_size,3)

+ rcs(dcache_size,3)

%ia% rcs(l2cache_size,3)

));

f 5 ols(m, data5data_model.df);

g 5 update(f, log(power) , .);

Assessing fit
The model’s fit to the sampled simula-

tion data used in formulation is quantified
with multiple-correlation statistic R2 in
Equation 10. This statistic quantifies re-
gression error SSE (Equation 8) as a fraction
of total error SST (Equation 9):

SSE ~
Xn

i~1

yi { ŷyið Þ2 ð8Þ

SST ~
Xn

i~1

yi {
1

n

Xn

i~1

yi

 !2

ð9Þ

R2 ~ 1 { SSE=SSTð Þ ð10Þ

From Equation 10, R2 will be 0 when the
model error is just as large as the error from
simply using the mean to predict responses.
Larger values of R2 suggest better fits for the
observed data. Thus, R2 is the percentage of
variance in the response captured by the
predictors. However, a value too close to 1
may indicate overfitting, a situation in
which the model’s worth is exaggerated
and future observations may not agree with
the modeled predictions. Overfitting typi-
cally occurs when too many predictors are
used to estimate relatively small data sets.

The model should also be examined to
ensure predictions exhibit no systematic bias
based on an analysis of residuals in the
following equation:

êei ~ yi { b̂b0 {
Xp

j~0

b̂bjxij ð11Þ

These residuals are per-sample differences
between modeled and simulated perfor-
mance in the training set as illustrated in

Figure 6. Residual schematic illustrating differences

between observed and predicted values in training data.
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Figure 6. In particular, we should validate
the following assumptions to ensure model
robustness:

1. The residuals are not correlated with
the predicted response.

2. The residuals’ randomness is the same
for all predicted responses.

3. The residuals have a normal distribu-
tion with zero mean and constant
variance.

The first two assumptions are typically
validated with scatterplots of residuals
against predicted responses because such
plots can reveal systematic deviations from
randomness. The third assumption is typ-
ically validated by quantile-quantile plots,
in which the quantiles of one distribution
are plotted against another. Practically, this
means ranking the n residuals ê(1), …, ê(n),
obtaining n ranked samples from the
normal distribution s(1), …, s(n), and pro-
ducing a scatterplot of (ê(i), s(i)) that should
appear linear if the residuals follow a normal
distribution.

Last, we obtain 100 additional randomly
selected points from the design space and
compare simulator-reported metrics against
regression-predicted metrics. To visualize the
error distribution for these validation points,
we can use boxplots, which are graphical
displays of data that measure location
(median) and dispersion (interquartile range,
IQR), identify possible outliers, and indicate
the symmetry or skewness of the distribu-
tion. Boxplots are constructed by

N horizontal lines at median, upper, and
lower quartiles;

N vertical lines drawn up from the upper
quartile and down from the lower
quartile to the most extreme data
point within 1.5 times the IQR (the
difference between the first and the
third quartiles) of the upper and lower
quartiles, with short horizontal lines to
mark the end of vertical lines; and

N circles for each outlier.

Boxplots enable graphical analysis of
basic error statistics. They also facilitate
comparisons between multiple distribu-

tions, because comparing boxplots often
reveals similarities more readily than com-
paring tables of error statistics.

Implementation. Multiple-correlation statis-
tic R2 is included in the model summary
obtained by applying the print function
to the formulated model. Residuals are
plotted against the fitted values (that is,
regression-predicted values) to ensure a lack
of correlation between residuals and predic-
tions, validating assumptions 1 and 2 of the
previous section. The xYplot command
uses the quantile method to stratify
fitted values into groups of 20 elements
(nx520). This function plots the median,
lower, and upper quantiles of the residuals
for these groups of 20 observations. The
grouping is necessary if there are too many
observations for a standard scatterplot.

We validate the third assumption of the
previous section (residual normality) by
plotting ranked residuals against ranked
samples from the normal distribution to
produce a quantile-quantile plot. The
qqnorm function automatically generates
a plot that should appear linear if the
residuals follow a normal distribution. The
qqline function draws a line through the
25th and 75th percentile of the residuals to
aid this analysis. The following code segment
illustrates these commands for our data set.

## Model Summary:

## R-squared statistic

print(f); print(g);

## Residual Analysis:

## (1) scatterplot and

## (2) quantile-quantile plot

trellis.device

(‘‘pdf’’,file5‘‘residf.pdf’’);

xYplot(resid(f) , fitted(f),

method5’quantile’, nx520,

xlab5 ‘‘Fitted Values’’,

ylab5 ‘‘Residuals’’);

dev.off();

trellis.device

(‘‘pdf’’,file5‘‘qqnormf.pdf’’);

qqnorm(resid(f));

qqline(resid(f));

dev.off();
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Variable o contains the observed true
values for our validation points. The pre-
dict function takes a regression model
object produced by the ols function and
a set of new data for prediction. Predictions
must be squared to invert the sqrt trans-
formation on the performance response. The
observations, predictions, and error rates are
concatenated into a three-column matrix
using cbind and written to a file. The error
distribution is visualized using boxplots
constructed with the boxplot function.
The following code segment illustrates these
commands for our data set.

## Model Prediction

o 5 data_valid.df$bips;

p 5 (predict(object5f,

newdata5data_valid.df))̂2;

e 5 abs(o-p) / o ;

write.table(cbind(o,p,e),

file5‘‘valid_bips.txt’’,

sep 5 ‘‘\t’’,

col.names5c(‘‘observed’’,

‘‘predicted’’, ‘‘error’’));

pdf(‘‘bips_box.pdf’’);

boxplot(e);

dev.off();

Analysis. Multiple-correlation statistic R2 is
measured at 0.965 for performance and

0.993 for power, suggesting a good model
fit to the training data of 1,000 sampled
simulations. Overfitting should not be
a concern, because the number of model
terms is far smaller than the number of
samples. Figure 7a suggests a correlation
between residuals and fitted values for
a nontransformed performance metric. Re-
siduals are biased positive for the smallest
and largest fitted values. Figure 7b indicates
that the standard variance-stabilizing square-
root transformation on performance reduces
the magnitude of these correlations. Variance
stabilization also causes residuals to follow
a normal distribution more closely, as
indicated by the linear trend in Figure 8.

Figure 9 indicates that the performance
model achieves median errors ranging from
3.5 percent (for the ammp benchmark) to
11.1 percent (for mesa), with an overall
median error across all benchmarks of 6.6
percent. Power models are slightly more ac-
curate, with median errors ranging from 3.1
percent (mcf) to 6.5 percent (applu), and an
overall median of 4.8 percent. Most predic-
tions achieve error rates below 15 percent.

Design optimization
The proposed simulation paradigm ef-

fectively combines spatial sampling and

Figure 7. Residual analysis: scatterplots of residuals before (a) and after (b) square root transformation on the response.

Residuals for an unbiased model should appear randomly and independently distributed around zero.
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regression modeling to increase the in-
formation content in a given number of
sparsely simulated designs. Spatial sampling
controls simulation costs by reducing the
number of simulations required to identify
a trend, whereas the computational efficien-
cy of regression models enables hundreds of
predictions per second. Collectively, these
techniques provide the necessary framework
for more comprehensive design space eva-
luations and new capabilities in traditional
design optimization problems, including
the following:

N Design space characterization. The
computational efficiency of regression
models enables the complete perfor-
mance and power characterization of
design spaces with hundreds of thou-
sands of points. By exhaustively eval-
uating the models for every point in
these spaces, we can quickly identify
design bottlenecks and trends as de-
sign parameters vary.17

N Pareto frontier analysis. The complete
design space characterization enables
the construction of a Pareto frontier,
which comprises designs that maxi-
mize performance for a given power
budget or minimize power for a given
performance target.17

N Parameter sensitivity analysis. Regres-
sion models let us consider all param-
eters simultaneously when performing
parameter sensitivity analyses. For
example, most earlier pipeline depth
studies held non-depth parameters
constant and considered the effects of
varying depth around a particular
baseline design. In contrast, regression
models let us vary all parameters
simultaneously and identify the best
design at each depth. This approach
eliminates any bottlenecks induced by
assuming a single parameter varies
independently from all other parame-
ters.17

N Heterogeneous multicore design. The
models enable comprehensive optimi-
zation for identifying effective core
design compromises given a workload
set. The models serve to identify per-
workload optima (architectures maxi-
mizing a metric of interest). A cluster-
ing analysis on these optima produces
design compromises for workloads
requiring similar resources at the
microarchitectural level. These com-
promises can form the basis for core
design in heterogeneous multiproces-
sor architectures targeting these work-
loads.17

Figure 8. Residual analysis: quantile-quantile plots of residuals before (a) and after (b) square root transformation on the

response. Plots for an unbiased model should appear linear.
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N Topology visualization. Microarchitec-
tural designs occupy high-dimensional
spaces. Regression models enable the
visualization of performance and power
topologies using 2D projections of the
design space. Practically, these projec-
tions produce 2D contour maps for all
pairs of design parameters in the space,
illustrating nonlinearities or nonmono-
tonicities. These visualizations aid bot-
tleneck analysis while motivating the
need for nonlinear models.

N Topology roughness metrics. Given vi-
sualizations of design topologies, we
can compare contour maps to sub-
jectively assess the relative roughness
of topologies. Roughness metrics sup-
plement these contour maps, quanti-
fying the range and variability of these
contours. Furthermore, these metrics
extend to higher dimensions and can
be applied beyond 2D contours (for
example, Equation 13 for d-dimen-
sional roughness where 2m . d and
v1,...,vd are nonnegative integers such
that v1 + ... + vd 5 m). In the
microarchitectural context, f (x) is
a performance or power function and
x1, …, xd are design parameters.
Function f (x) is approximated by
regression models, whereas the deriva-
tives and integrals can be approximat-

ed by differences and sums:

R2 ~

ð
x2

ð
x1

d2f

dx2
1

 !2
2
4

z 2
d2f

dx1x2

 !2

z
d2f

dx2
2

 !2
3
5dx1dx2

ð12Þ

Rd ~

ð
xd

. . .

ð
x1

X m!

v1! . . . vd !

|
dmf

dx1
v1 . . . dxd

vd

� 	2

dx1 . . . dxd

ð13Þ

N Topology optimization. Optimization
through heuristic search is an alternative
to exhaustive model evaluation. Tech-
niques such as gradient descent and
simulated annealing iteratively traverse
the design space to identify optima.
Each iteration requires comparisons
between the current design and its
neighbors based on a metric of interest.
Although microarchitectural simulators
could be invoked for every iteration,18

using regression models for these com-
parisons significantly increases the heur-
istic’s computational efficiency.

These capabilities, enabled by regression
models, produce more comprehensive var-

Figure 9. Error distributions: boxplots capture quartiles of model errors when predicting performance and power of

validation set.
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iants of traditional studies or allow new
studies not possible with current usage
patterns for microarchitectural simulators.
Collectively, these capabilities motivated us
to develop our new simulation paradigm on
the basis of spatial sampling and regression
modeling to more effectively use simulator
cycles.

Detailed simulation will continue to play
a significant role in microarchitectural

design. Simulators enable early design space
evaluations and are invaluable for assessing
trade-offs. However, if we define simulation
efficiency as the information content derived
from a given number of simulation hours, we
find that current simulator usage patterns are
highly inefficient. Spatial sampling and
statistical inference reduce these inefficiencies
by identifying trends and constructing pre-
dictive models from a sparsely simulated
design space. These efficiency gains translate
into new capabilities in microarchitectural
design and optimization. MICRO
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