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Abstract

Designers of chip multiprocessors will increasingly bd@dlupon to optimize for a combination of design metrics unde
a variety of design constraints. The adoption of chip mutipssors has also led to a shift in design metrics toward
aggregate throughput and away from single thread latenay.eMamine the compromises between latency and throughput
under various power, thermal, area, and bandwidth conatsato quantify the latency penalties of a purely throughput
optimized design. We consider a large chip multiprocesssigh space that includes core count, core complexity (jpipe
dimensions, in-order versus out-of-order execution), eache hierarchy sizes.

We demonstrate an approach to effectively assess trad@igéin a comprehensive core model, a set of optimizatien cri
teria, and a set of design constraints. We perform a numbeasé studies to evaluate these trade-offs, exposing sigmifi
single thread latency penalties when optimizing solelytfiooughput and neglecting other measures of performanse. A
single thread latency continues to be one of several des@rias, any choice to compromise latency should be well unde
stood before implementation. Collectively, our resultggast single thread latency is still a design metric of intance
given that optimizing throughput alone will significantlyrapromise latency. Furthermore, the case for simple, aeor
cores should be taken with caution given this balanced vigredormance.

1 Introduction

Microprocessor design experienced a fundamental paradigihwhen performance gains across design generations
were no longer achieved by frequency scaling and instradéeel parallelism, but by thread-level parallelism withip
multiprocessors and shared on-chip caches. This emphasisead-level parallelism promises greater energy effayie
and throughput performance. As throughput increasingtpbees the primary design metric, however, we find chip multi-
processors implemented with multiple simple (e.g., ineoygheavily multi-threaded processor cores. Such systeaxs
imize throughput by providing an unparalleled number of patational threads within a reasonable power envelope, but
potentially compromise other design metrics such as peathfatency. To effectively assess these trends and trfégle-o
the designer must evaluate a large design space for a coemgiea set of design metrics and technology constraints.

The case for throughput computing is often supported by iproltessor design exploration in a constrained design
space. Techniques that decouple processor core simusatimterconnect modeling mitigate simulation costs arabkn
more comprehensive studies. Using such an approach, weateal design space with varying core count, core complexity
and cache sizes. The most effective compromise betweenghpat and latency for designs within such a large space is
not obvious, however, especially when evaluating thes®paance metrics in conjunction with other design metreeg
power and temperature) and technology constraints (éeggréa and pin bandwidth). Neglecting latency in throughpu
oriented design without quantifying the per thread latepepalties is a risky proposition as many applications ramai



latency sensitive. For example, Internet service progideay increasingly differentiate themselves on the basissgfonse
times or implement tiered service-level agreements withing response time guarantees.

We consider a comprehensive chip multiprocessor desigregpat considers core count, core complexity, and cache
hierarchy parameters (Section 3). Zauber, a methodolagydcouples the simulation of individual cores from theusim
lation of chip fabric, enables the tractable evaluatiorao§é& number of core counts and designs (Section 4). We efgphas
the need to consider this large design space in conjunctitnarset of comprehensive design metrics and constraings. W
demonstrate an approach to effectively assess trade-@tffeebn these optimization criteria in a number of case studi
(Section 5):

e Design Space CharacterizationWe quantify the trade-offs between single thread latencdyaygregate throughput
for various multiprocessor designs. This characterinatioposes significant single thread latency penalties when
optimizing solely for throughput and neglecting other meas of performance.

e Sensitivity to Latency Constraints: Given the importance of taking a holistic view of performanwe assess the
sensitivity of the core design optimization to single thttéatency constraints. We find simpler in-order cores often
cannot meet more stringent latency constraints.

e Sensitivity to In-Order Area: In-order cores tend to be smaller than out-of-order cordsmmassess the sensitivity
of the core design optimization to more ambitious area apions for in-order execution. We find that out-of-order
designs offer comparable throughput for lower latenciéegtike to in-order designs even under the most optimistic
in-order area reductions.

e Sensitivity to Bandwidth Constraints: As area per core decreases and the number of cores per chiases,
pin bandwidth becomes increasingly relevant. We assessetigitivity of the core design optimization to various
bandwidth constraints, finding significant off-chip bandtkimay be required to mitigate increased demands on the
memory hierarchy from a large number of small cores.

e Dynamic SMT Support: We present a preliminary analysis to dynamically disengagsport for simultaneous
multi-threading and improve single thread latency. Thialgsis suggests dynamic SMT support allows flexible
trade-offs between latency and throughput once an art¢hitebas been designed.

Collectively, our findings suggest single-thread latermytimues to be an important design metric to be included yn an
optimization criteria. Arguments for simple, in-order esrshould be taken with caution given that such designs appea
emphasize only throughput, potentially at significant cosatency.

2 Related Work

There has been a burst of work in recent years to understanmktifiormance, energy, and thermal efficiency of different
CMP organizations. Few have looked at a large numbers ofcore

Davis et al. [3] explore the design space for core type, nurabeores, cache size, and degree of multi-threading, but
focus on maximizing throughput without regard for sindieetad latency. They show that simple, shallow, in-ordeesor
with large numbers of threads per core are optimal. The reesthat multiple threads allow servicing of multiple cache
misses to be overlapped with modest hardware: only an eagjiater set per thread, instead of the expensive out-a¥ord
hardware required to exploit substantial memory-leveafalism within a single thread. This work focused on trantigan
processing (OLTP) workloads, which tend to have poor imsioa-level parallelism and poor cache locality, and found
4-8 threads per core to be optimal depending on workloader&kgxisting products embody this philosophy. Kongetira
et al. [9] describe the Sun T2000 “Niagara” processor, ahteigay multi-core chip supporting four threads per core and
targeted toward workloads with high degrees of threadHearallelism. Chaudhry et al. [2] go on to describe the besefi
of both multiple cores and multiple threads and sharingtaighes with a single L2 cache. They also describe the Sun Rock
processor’s “scouting” mechanism that uses a helper threptefetch instructions and data. Graphics processorsl§GP
also embody this philosophy, with large numbers of fairlyngmel-purpose “shaders” (i.e., cores) and the ability tepke
many threads in flight. For example, the ATl R580 exhibits B&ders and can support 512 concurrent threads (where each
thread is servicing a pixel), while the Nvidia G71 seriesikith 32 shaders (but a larger number of texture units). Llilee



T2000, GPUs stress throughput over single-thread (sipigiel) latency, and use the high degree of multithreadingask
memory (chiefly texture) latency.

Li et al. [15] also explore the design space for core coupgle depth, out-of-order issue width, and L2 size, andwsho
the importance of thermal constraints, but only consideglsithreaded cores. Their work focuses on single-thitade
multi-programmed SPEC workloads. Monchiero et al. [16]lesg@a similar design space and also demonstrate the im-
portance of thermal constraints, but this time in the cantéxan assortment of parallel shared-memory applicatidamns.
and Martinez [12] instead focus on power constraints, tuatysthe SPLASH parallel benchmarks. Their results show tha
parallel execution on a CMP can improve energy efficiencyganad to the same performance achieved via single-threaded
execution, and that even within the power budget of a singte,aa CMP allows substantial speedups compared to single-
threaded execution. In [13], they go on to develop heusdiic dynamic adaption to allow a CMP to find the optimal
voltage/frequency settings and optimal number of coresitdgsleep to meet performance constraints while maxirgizin
power savings. In a related vein, Donald and Martonosi [#gt® heuristics for scheduling threads on a CMP to minimize
thermal throttling, while Powell et al. [18] instead propas core-hopping approach on CMPs in response to imminent
thermal throttling.

Huh et al. [8] categorized the SPEC benchmarks into CPU-thocache-sensitive, or bandwidth-limited groups and
explored core complexity, area efficiency, and pin bandwifighitations, concluding, as we do, that out-of-order soaee
generally preferable because of their greater area effigiétkman and Stenstrom [5] use SPLASH benchmarks to explore
a similar design space in the context of energy-efficientiyiag at the same conclusions. These papers did not, henvev
account for the area overhead of on-chip memory controlémse that is a fairly recent phenomenon.

Kumar et al. [10] consider the performance, power, and argsct of the interconnection network in CMP archi-
tecture. They advocate low degrees of sharing, but useattdios oriented workloads with high degrees of inter-tdrea
sharing. Since we are modeling throughput-oriented wadkdoconsisting of independent threads, we follow the exampl
of Niagara [9] and employ a similar sharing strategy. In ogpegiments, each L2 cache bank is shared by four cores- Inter
connection design parameters are not variable in our depigice at this time, and in fact constitute a sufficiently espee
design space of their own that we consider this to be beyanddbpe of the current paper.

The methodologies for analyzing pipeline depth and widtidbon prior work by Lee and Brooks [11] by developing
first-order models for capturing changes in core area asipgdimensions change, thereby enabling power density and
temperature analysis. We identify optimal pipeline dimens in the context of CMP architectures whereas most prior
pipeline analyses consider single-core microprocesséys,[19]. Furthermore, most prior work in optimizing pipels
focused exclusively on performance although Zyuban, etaaind 18FO4 delays to be power-performance optimal for a
single-threaded microprocessor [20].

3 Design Space Models
3.1 Design Space

We model the configurations of Table 1 drawn from the desigicespecified by Table 2. In addition to considering
issue width, data cache size, and issue style (i.e., inropdeof-order), we vary pipeline depth and L2 cache sizeefich
configuration to optimize throughput under various conistsa Performance, power, and area for varying pipelingldep
and width are estimated using prior models by Li, et. al. [1®]particular, latencies scale linearly with the numbefaof
out-of-four (FO4) delays per pipeline stage. A number offigamations implement 2-way simultaneous multi-threading
modeled by increasing microarchitectural resources b} arid scaling associated unconstrained power in prior wgrk b
Li, et. al. [14].

3.2 In-order Performance

In-order architectures (10) differ from out-of-order aitelctures (OO) in their treatment of instruction dependesc
IO architectures block issue if a previous instruction &let due to an instruction dependency. We model issue logic
to enforce in-order execution. Specifically, if an instiastis waiting for operands, all following instructions imggram
order will be blocked. For contrast, instructions will ndotk on the an instruction waiting for operands in out-ofier
execution. Although we enforce in-order issue, we allowafdbrder retirement. Instructions in modern processenmsl to



[ Configuration | 004SMT ] 004 [ 002 ] 0S4 0S2 [ 104SMT | 104 [ 102 | 1S4 [ Is2 |
Microarchitectural Summary

Fetch/Issue Width 4/8 ] a8 | 214 ] a8 ] 24 4/8 [ 48 ] 214 | 48] 24
D-Cache Size 32KB 8KB 32KB 8KB
Execution out-of-order in-order

Area Summary
Area (19FO4pnm?) || 1122 | 838 ] 868 ] 645 ] 1289] 985 [ 7.46] 7.31] 552 10.61

Table 1. Design Summary

| Microarchitectural Parameters

Execution in-order, out-of-order
Depth 18-36F04, steps of 6FO4
Width 4,8 issue bandwidth

Register File || {40GPR, 36FPR;,, _order

{BOGPR' 72FPR0ut70f70rder

Issue Queueg| {Issue Width;,, _order

{40FXU, 10FPU, 36LSU, 12BR,ut o7 —order
L1 I-Cache 32KB

L1 D-Cache 2-128KB, factors of 4

L2 Cache 2-8MB, factors of 2

Table 2. Microarchitectural Parameters

have very different execution latencies and out-of-ordgrement can improve the performance of our in-order &echire
with very little hardware overhead.

In addition to these changes to the fundamental pipelinie J@ge reduce the sizes of microarchitectural resources fro
those in the original OO design. For the same issue width,alsehhe 10 sizes of the physical register, load/store queue
and retirement queue relative to OO sizes. We also set thesi@ iqueue size to the issue width since large issue queues
are unnecessary due to in-order execution.

3.3 In-order Power

We need to scale down the unconstrained power (i.e., powerebelock gating effects are considered) for all resources
whose sizes are changed relative to the OO model. We use CRQJto calculate the scaling factor for the L1 caches
and first-level TLB’s. Changes in pipeline width will impaebwer attributed to functional units and SRAM arrays (via
additional ports). We assume unconstrained hold and siwdgbower increases linearly with the number of functional
units and access ports, a valid assumption since we modethitexture with clustered functional units and replicate
caches for additional read ports [11]. For certain stregplinear power scaling may be optimistic and, for exangdes
not capture non-linear relationships between power andatingber of register file access ports since it does not account
for the additional circuitry required in a multi-ported SRlAcell. For this reason, we apply superlinear power scaling
with exponents drawn from Zyuban'’s work in estimating eyeggowth parameters [22]. Since these parameters were
experimentally derived through analysis of a non-clusterechitecture and we model a clustered architecture, wg onl
apply this power scaling to the non-clustered componentsinarchitecture.

Our power models do not consider the power benefits of deagghardware complexity for certain structures when
designing for 10 instead of OO cores. For example, issue ggiguan IO architecture can be much simpler due to simpler
wake-up and issue logic. However, the size of those ressuncthe 10 model is very small (four to eight entry issue
gueues) and power scaling to account for these effects auit tittle impact on the estimate of total power consumption



Normalized performance/area

o
N}

Fetch

Decode

NFA Predictor 1 Multiple Decode | 2
L2 I-Cache 11 | Millicode Decode | 2
L3 I-Load 8 Expand String 2
I-TLB Miss 10 | Mispredict Cycles| 3
L2 I-TLB Miss 50 | Register Read 1
| Execution Memory
Fix Execute 1 L1 D-Load 3
Float Execute 4 L2 D-Load 9
Branch Execute | 1 L3 D-Load 77
Float Divide 12 | Float Load 2
Integer Multiply | 7 D-TLB Miss 7
Integer Divide 35 | L2 D-TLB Miss 50
Retire Delay 2 StoreQ Forward | 4
Table 3. Baseline Latencies

3.3.1 In-order Area

Table 1 presents the area estimates in 65nm technologydbitectures in our design space. As in the power models, we
scale down the area for all resources whose sizes are cheglgde to the OO model. Area estimates for the L1 caches
and first-level TLB'’s are obtained from CACTI. We assess thesgivity of our findings to the area model in Section 5.3.

The core area may occupy less than 50% of the chip area in allifpnocessors and it is important to model the area
of other on-chip structures, including the L2 caché.§2mm?), DDR/DRAM controllers (.96mm?), and interconnect
networks {1.40mm?). We estimate the on-chip L2 cache area from the IBM POWERMpthioto, scaling it to 65nm
technology. Our area estimates for DDR/DRAM controllers based on the Sun Niagara die photo and its total chip
memory bandwidth. We assume a linear area scaling of DDRMRANtrollers relative to the chip’s maximum pin
bandwidth. Finally, we assume every four cores share an tBesaand model a 4-way crossbar implemented in a high
metal layer as in previous work by Kumar et. al. [10].

The L1 cache structure may be responsible for more than hal€ore area and therefore properly selecting the size
for these structures is critical to chip area efficiency. Weep several L1 cache sizes, adjusting all related on-@uieec
structures proportionally, and evaluate performance ameep-performance efficiencyxl P.S3/W). As shown in Figure 1,
the bestBI PS/Area andBIPS3 /(W - Area) are achieved with 8KB or 32KB L1 data caches for almost aliectures.
Therefore, we perform all following experiments with théwe L2 cache sizes.
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Figure 1. BIPS/Area and BIPS?/(W-Area) of varying L1 data cache sizes.




4 Experimental Methodology
4.1 Simulation Framework

We employ Zauber to tractably simulate a large number ofscara core designs, a simulation methodology that de-
couples the simulation of individual cores from the simiglatof chip fabric and L2 cache [15]. We first use Turan-
dot/PowerTimer, a cycle-accurate trace-driven simulégotollect core performance and power characteristics @i 1
instruction segments [1, 17]. Turandot/PowerTimer orafjinmodeled a POWERA4-like out-of-order architecture, thas
been extended for design space exploration. The simulatoalso been modified to generate traces of single-core llzcac
access patterns. Zauber, a shared L2 cache and fabric simuises these access patterns to interpolate perforraanice
power results for various chip multiprocessor configuradidy separately simulating the L2 and fabric, Zauber &tatds
CMP simulation. We also use a simplified temperature modelated against Hotspot 2.0 to estimate thermal effects at
core granularity [15].

4.2 Design Metrics and Constraints

We evaluate the design space for performance, differémisetween single thread latency and aggregate throughput
We also evaluate designs for power and thermal efficiencybyparing the performance of chips with heatsinks of varying
effectiveness. In addition to these optimization critenia impose hard physical constraints on the total chip pg2EoW)
and peak temperature (100 C). If these constraints are eda@fe use voltage scaling to throttle chip speed and ensure
these constraints are satisfied. We also consider two éliff@rea constraints (200, 480n2) corresponding to different
CMP markets. We examine three different pin bandwidth cairds (24, 48, 96 GB/s). As with power and temperature,
if the chip reaches pin bandwidth limitations, the chip isottied to ensure average bandwidth does not exceed maximum
available bandwidth. We do not consider the burdens of paratfic on chip pin bandwidth in this work.

4.3 Benchmarks Methodology

We use two benchmarks (JBB, MCF) for case studies to denatagiur approach for quantifying trade-offs between
single-thread latency and aggregate throughput undeswsaghysical constraints in a comprehensive design spag&loW
not leverage any particular feature of these benchmark®andpproach is generally applicable. These single-tleead
applications are representative of workloads that mayiredrade-offs between latency and throughput since théybéx
task-level parallelism but may still require low singleghd latency.

e JBB represents an e-commerce workload. Certain markets avroess may require guaranteed response times in
tiered service-level agreements. SpecJBB is interestgguse it is insensitive to L1 cache size and produces signif
icant off-chip traffic regardless of L2 cache size. This bemark also benefits from the instruction level parallelism
of OO cores.

¢ MCF computes a minimum-cost-network for traffic routing anceigresentative of decision support applications that
may require interactive responses or iteratively refing teswer, delivering the best available answer within &giv
time. The MCF benchmark has a 2MB working set and is thus exhg memory bound unless 2MB of L2 cache
per thread is available.

5 Results

We takesingle thread latencgs the delay for a billion instructions of a particular thdebn contrast, we takaggregate
delayas the delay for a billion instructions across all threadextis. Aggregate delay is equivalent to the inverse of aggre
gate throughput measured in BIPS. We first characterizeateady and throughput trade-offs of designs in Table 1 when
optimizing for throughput and neglecting latency. Introohg latency into the optimization, we then maximize thropgt
for a range of latency targets. Recognizing the recent ttewdrd simpler, smaller cores, we assess the sensitivibyof
results to smaller in-order core areas. However, as areagrerdecreases and the number of cores per chip increases,



Configuration [| Cores | Depth (FO4)| L2 Cache (MB) [ Voltage (V) ]

0Ss2 28 24 2 1.00
0S2SMT 20 24 8 0.97
0s4 20 36 8 1.00
OS4SMT 16 30 8 0.96
002 24 24 2 1.00
002SMT 20 30 4 1.00
004 20 30 2 1.00
O04SMT 16 36 4 1.00
1S2 28 24 4 1.00
IS2SMT 24 18 4 0.90
1IS4SMT 20 30 8 0.97
102 24 24 4 1.00
102SMT 20 18 4 0.92
104SMT 20 30 4 0.98

Table 4. Throughput Optimized Designs of Figure 2

pin bandwidth becomes increasingly relevant and we wilh@ra the sensitivity of our results to bandwidth constsint
Lastly, we assess the potential of dynamic simultaneous-thuéading (SMT) capabilities in which a core design fMiB
restricts itself to one thread.

5.1 Design Space Characterization
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Figure 2. [JBB] :: Single thread latency versus aggregate delay (inwse throughput).

Figure 2 plots JBB single thread latency against aggrebedeighput for the architectures of Table 1. Each pointia thi
figure displays the throughput optimized configuration emofsom various core counts, pipeline depths, L2 cache sizes
and voltage scaling levels identified by Table 4 to meet tlaéoonstraints. This figure shows that OO configurations tend
to have both the lowest single thread latency and the lovgggegate delay (i.e., highest aggregate throughput). tfdmsl|
is partly because OO cores are designed with relativelyashalipelines and modest L2 caches, but primarily because th
OO architectures we consider inherently achieve bettdopaance and31 P.S3 /(W - Area). For both JBB and MCF, such
architectures are an area efficient way to improve the numiiastructions executed per cycle.

Introducing SMT improves throughput for both OO and 10 dasigHolding the number of simultaneous threads con-
stant at 2 while increasing superscalar width from 2 to 4 getherally improve throughput for OO configurations as more



resources are supplied for the same demand. However, siegethe number of threads per pipeline does not necessar-
ily help 10 cores because such cores do not favor wider pipslas a means to exploit instruction level parallelism. For
relatively narrow pipelines, we find the throughput gainsiofiultaneous multi-threading are achieved at the expehse o
single thread latency. For example, the optimal IS2 desifpreses aggregate delay and single thread latency of 065 a
1.706 secs/billion instructions. In contrast, the optilsSMT design achieves delay and latency of 0.055 and 2.18661.
effect, multi-threading for 1S2 designs will reduce aggriegdelay by 15% while increasing single thread latency [9.56
Similarly, multi-threading for 102 designs will reduce aggate delay by 21% while increasing individual threadraye

by 32%.

5.2 Sensitivity to Latency Constraints

As shown by the previous characterization of single thraéehicy and aggregate delay (inverse throughput), signtfica
latency penalties may by incurred if latency is neglecteénvbptimizing for throughput. For this reason, the optirtia
criteria should include particular latency targets. Sfieadly, we consider the sensitivity of the optimization plem given
latency constraints by restricting candidate solutiortedse with single thread latencies withift of a previous generation
design. We take our POWERA4-like baseline as our refererttevaaep: from 10% to 90%. For each design in Table 1, we
optimize for total throughput after meeting the latencystaaint. Note that some designs are not able to achievettrecha
target and we omit their results. After optimizing core chpipeline depth, L2 cache size, and voltage scaling to meee
throughput for a latency target, we again consider our twéopmance metrics: single thread latency and aggregass/del
(i.e., inverse throughput).
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Figure 3. [JBB,400mm?,LR] :: Single thread latency (L) and aggregate delay (R) vesus latency constraint

We first present results for SpecJBB with both the low-rasist (LR) and high-resistance (HR) heatsinks (Figures.3-4)
Figure3L shows the single-thread latency for each architabconfiguration. Fon > 50% no in-order configurations
are viable. We also see the well known trend that SMT archites can hurt single-thread latency; the best in-order SMT
configurations can only meet the 40% latency constraint aad the OO4SMT configuration is only able to meet the 60%
latency constraint.

Figure3R shows the optimized aggregate delay (inversedfimout) for the designs of Figure 3L. The OO4SMT configu-
ration achieves the best throughput up to the 40% constediet which the OO4 configuration achieves better througshp
The best in-order configuration, IO2SMT, is competitivehnétach of the other out-of-order architectures OO4SMT and
004 up to the 30% constraint, but is otherwise unable to a&ehieth the low single thread latency and high aggregate
throughput of the OO designs. This observation is also toué® configurations without SMT. If target design requires
single-thread latency closer to the previous generatian (@ithin 50%), then the O04 configuration achieves the best
throughput. If strict single thread latency requirememésenforced, all other architectures must sacrifice thrpugfor
single thread latency (for example, by moving to a deepeglipip or increasing L1 cache sizes) while the OO architectur



can maintain near peak throughput without compromisirgniay.
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Figure 4. [JBB,400mm?HR] :: Single thread latency (L) and aggregate delay (R) vesus latency constraint

FiguredL repeats the analysis after imposing harsher thleranstraints by replacing the low-resistance heatsirk ai
high-resistance heatsink. Compared to the LR case, mang aomifigurations are eliminated from consideration as they
violate the latency targets as the apply severe DVFS tingtith efforts to meet thermal constraints. Although therefice
POWERA4-like architecture also uses a high-resistancein&athe increased core count in throughput optimizedgaessi
induces significant global heatup via the heat spreadeusecadditional throttling. Overall, additional thermahstraints
reduce the differences in single thread latency betweemt32¥0 designs. As shown in Figure 4L, the 102 design achieves
the lowest single-thread latency at the 40% constraint Bed®2SMT design is very close to best at the 30% constraint.
At the 50% latency constraint, all in-order designs are iglated and OO2 design is favored for its superior power, and a
a result, thermal characteristics relative to OO4. Thusleusevere thermal constraints simpler cores can achigwer lo
latency than the OO4 core.

Figure4dR shows the aggregate throughput with the HR cordigur. We find that the I02SMT and the OO4SMT
configuration are comparable, with both achieving aggeedalays of approximately 0.115 seconds per billion insibns
at the 10% and 20% latency constraints. With constraintstlesn 30% many configurations are quite close and 004 is
only clearly better when the constraint exceeds 40%.

Figures 5-6 present similar results for MCF. Overall, tlendis observed for JBB are also valid for MCF. exhibiting
a wide spread in single-thread latency between 10 and OO gqumafions. When considering aggregate delay (inverse
throughput), the OO SMT configurations are clearly the blstaes for the smaller latency constraints ranging from 10%
to 40%. We observe 10 architectures generally cannot aehifeylatency targets greater than 60% of baseline. Forcaten
targets less than 60%, OO designs achieves lower aggregjateahd higher aggregate throughput relative to 10 designs
Mcf is a memory bound benchmark and tends to favor large LResn the optimal configuration. This further weakens
the area advantage of 1O architectures as the L2 cache escaparger portion of the chip area. Given the smaller area
budget for processing cores, in-order designs cannot ixipdr low area as effectively, placing additional coresdreater
throughput. Thus, chips with larger caches will favor OOrd@designs for a given area budget.

5.3 Sensitivity to In-Order Area

In-order cores tend to be smaller than out-of-order coreseasral resources supporting out-of-order execution,(e.g
register rename tables, issue queues) become unneceRsatycing the area of other non-core on-chip structures will
further improve the relative area advantage of 10 desighss [D area advantage translates into an increased coréfooun
a given area budget that favors aggregate throughput. Reatog the recent trend toward simpler, smaller cores, wBess
the sensitivity of our results to more aggressive estimat@s-order core area. First, the interconnection area aweep
are reduced to 10% of the original assumption. We then cengdicore area reductions of 10%, 30%, and 50% relative to
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the original area estimates while keeping OO core area atsmunchanged. We constrain the total chip area ta208
and pin bandwidth to 48GB/s.

Figure 7 presents the improvements in JBB aggregate defagre throughput) resulting from smaller per core area
and a greater number of cores per chip. As the reduced atgsatst become increasingly optimistic (50% to 90%), we
observe aggregate delay reductions of up to 40%. For exafiglere 7L indicates, for a low-resistance heatsink, agaje
delay falls 41% from 0.081 to 0.048 and and 21% from 0.053@d®seconds per billion instructions for [02 and IO2SMT,
respectively. Similarly for a high-resistance heatsinkigiure 7R, aggregate delay falls 42% and 41% for |02 and IORSM
The high-resistance heatsink favors the power and therh@abcteristics of 10 cores. For example, IO2SMT cores with
70% and 90% area reductions achieve 22% and 44% lower aggiglay relative to OO4SMT, the highest throughput OO
core. However, in nearly all cases, the throughput optitBadésigns exhibit worse single thread latency than OO dssign

In contrast, Figure 8 indicates that even if we assume 50%é@ egeductions, the throughput maximizing 10 configu-
ration is only comparable to the best OO configuration. Aggte delays for IS2 and OO4SMT differ by only 5% or 6%
regardless of heatsink effectiveness. MCF is a memory bawmklload and tends to favor larger L2 caches in its optima.
Thus, the area advantages of IO designs are limited as cesebadgets are constrained to favor larger cache area lsudget
lllustrating this effect, the throughput of IS2SMT in FiguBL is unchanged despite area scaling from 90% to 50%. Adding
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heatsinks

cores while holding L2 cache sizes constant results in migthel cache miss rates, negative aggregate throughputretu
and higher pin bandwidth requirements. Addressing thetitehecks by increasing L2 cache sizes to hold working sets
from additional cores will exceed the chip area constradifdre severe thermal constraints could favor IO architestas
shown in Figure 8R. Even in this case, only IS2 with the mosinaiptic area reductions achieves lower aggregate delay
and greater throughput than the best OO design (5% differsom OO4SMT).

5.4 Sensitivity to Bandwidth Constraints

As area per core decreases and the number of cores per cteépses, pin bandwidth becomes an increasingly relevant
challenge for multiprocessor designers. We assess théiggnsf our results to pin bandwidth constraints. We mbde
increased pin bandwidth by increasing the total number oRbannels on the die and consider total chip bandwidth of
24, 48 or 96 GB/s. Since these additional channels requi#ialal area that may restrict the number of cores or L2 each
on the chip, more pin bandwidth can actually be detrimewntédtal throughput depending on the exact trade-offs.

Figure 9 presents the single thread latency and aggreglate tdaede-offs under pin bandwidth constraints for JBB and
MCF. The 96GB/s point is identified for each design. 48 andR&Gre identified by moving along connecting lines. In
several cases, additional pin bandwidth is essential. ¥anple, OO4SMT of Figure 9L requires additional pin bandtvid
reduces latency while increasing total throughput and 98@maximizes the overall performance of JBB on this design.
In other cases, additional pin bandwidth appears less itapbas the performance benefits of additional bandwidthado n
justify the additional area overhead of the associated DBdhoels. For example, I02SMT and OO2 achieve the lowest
aggregate delays with 48GB/s. Figure 9R suggests pin batftitlvg less performance critical for MCF OO designs. For
example, 002 and OO4SMT achieve lower latency and greatughput, respectively, with 24GB/s. In contrast, the 102
designs require significant off-chip bandwidth to reduogs thread latency, mitigating increased demands on timeane
hierarchy from a large number of small cores.

5.5 Dynamic SMT Support
While our results suggest simultaneous multi-threading B support is an efficient mechanism for achieve high
throughput, we need to be cognizant of single thread latddggamically making SMT available will enable greater $ang

thread latency is valued over aggregate throughput. FigQrevaluates the latency and throughput trade-offs foririgrn
off SMT support for an SMT design. Each line in the figure caradatency-throughput points of designs with SMT on
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heatsinks

(upper-left) and off(lower-right). Turning off SMT for anMsT core improves single thread performance between 21%
(I02SMT) and 43% (O04SMT) for all architectures by elimingtpipeline resource contention. However, disengaging
SMT support will incur aggregate throughput penalties eetw15% (OS2SMT) and 31% (I02SMT). Thus, dynamically
turning off SMT support may be a viable technique to adjusttiiade-off between single thread latency and aggregate
throughput for a given architecture.

6 Conclusions

This work provides a comprehensive analysis of CMP desiganndonsidering performance in terms of both single-
thread latency and aggregate chip throughput. We perfamattalysis under a variety of technological constraimispid-
ing area, thermal, energy, and pin-bandwidth limitatid@snsidering such a large space of parameters requiresicigni
infrastructure development and careful attention to expemtal methodology.

Overall, out-of-order cores remain competitive for chipltiprocessors when the single thread latency penalties of
simpler in-order cores are considered. More generally, @ele design space studies must increasingly take a kedanc
view of performance to include both latency and throughpdtiximizing throughput by providing a large number of
computational threads will continue to be important, tigioput must be optimized in conjunction with other designriogst
and constraints. The recognition that not all applicatiemsthroughput oriented suggests designs may require amict
low single thread latency and high aggregate throughput .fi@dings suggest out-of-order execution may still be thet be
approach to achieve this mixture.
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