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Abstract

Designers of chip multiprocessors will increasingly be called upon to optimize for a combination of design metrics under
a variety of design constraints. The adoption of chip multiprocessors has also led to a shift in design metrics toward
aggregate throughput and away from single thread latency. We examine the compromises between latency and throughput
under various power, thermal, area, and bandwidth constraints to quantify the latency penalties of a purely throughput
optimized design. We consider a large chip multiprocessor design space that includes core count, core complexity (pipeline
dimensions, in-order versus out-of-order execution), andcache hierarchy sizes.

We demonstrate an approach to effectively assess trade-offs given a comprehensive core model, a set of optimization cri-
teria, and a set of design constraints. We perform a number ofcase studies to evaluate these trade-offs, exposing significant
single thread latency penalties when optimizing solely forthroughput and neglecting other measures of performance. As
single thread latency continues to be one of several design metrics, any choice to compromise latency should be well under-
stood before implementation. Collectively, our results suggest single thread latency is still a design metric of importance
given that optimizing throughput alone will significantly compromise latency. Furthermore, the case for simple, in-order
cores should be taken with caution given this balanced view of performance.

1 Introduction

Microprocessor design experienced a fundamental paradigmshift when performance gains across design generations
were no longer achieved by frequency scaling and instruction-level parallelism, but by thread-level parallelism withchip
multiprocessors and shared on-chip caches. This emphasis on thread-level parallelism promises greater energy efficiency
and throughput performance. As throughput increasingly becomes the primary design metric, however, we find chip multi-
processors implemented with multiple simple (e.g., in-order), heavily multi-threaded processor cores. Such systemsmax-
imize throughput by providing an unparalleled number of computational threads within a reasonable power envelope, but
potentially compromise other design metrics such as per thread latency. To effectively assess these trends and trade-offs,
the designer must evaluate a large design space for a comprehensive set of design metrics and technology constraints.

The case for throughput computing is often supported by multiprocessor design exploration in a constrained design
space. Techniques that decouple processor core simulationand interconnect modeling mitigate simulation costs and enable
more comprehensive studies. Using such an approach, we evaluate a design space with varying core count, core complexity,
and cache sizes. The most effective compromise between throughput and latency for designs within such a large space is
not obvious, however, especially when evaluating these performance metrics in conjunction with other design metrics (e.g.,
power and temperature) and technology constraints (e.g., die area and pin bandwidth). Neglecting latency in throughput
oriented design without quantifying the per thread latencypenalties is a risky proposition as many applications remain
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latency sensitive. For example, Internet service providers may increasingly differentiate themselves on the basis ofresponse
times or implement tiered service-level agreements with varying response time guarantees.

We consider a comprehensive chip multiprocessor design space that considers core count, core complexity, and cache
hierarchy parameters (Section 3). Zauber, a methodology that decouples the simulation of individual cores from the simu-
lation of chip fabric, enables the tractable evaluation of large number of core counts and designs (Section 4). We emphasize
the need to consider this large design space in conjunction with a set of comprehensive design metrics and constraints. We
demonstrate an approach to effectively assess trade-offs between these optimization criteria in a number of case studies
(Section 5):

• Design Space Characterization:We quantify the trade-offs between single thread latency and aggregate throughput
for various multiprocessor designs. This characterization exposes significant single thread latency penalties when
optimizing solely for throughput and neglecting other measures of performance.

• Sensitivity to Latency Constraints: Given the importance of taking a holistic view of performance, we assess the
sensitivity of the core design optimization to single thread latency constraints. We find simpler in-order cores often
cannot meet more stringent latency constraints.

• Sensitivity to In-Order Area: In-order cores tend to be smaller than out-of-order cores and we assess the sensitivity
of the core design optimization to more ambitious area assumptions for in-order execution. We find that out-of-order
designs offer comparable throughput for lower latencies relative to in-order designs even under the most optimistic
in-order area reductions.

• Sensitivity to Bandwidth Constraints: As area per core decreases and the number of cores per chip increases,
pin bandwidth becomes increasingly relevant. We assess thesensitivity of the core design optimization to various
bandwidth constraints, finding significant off-chip bandwidth may be required to mitigate increased demands on the
memory hierarchy from a large number of small cores.

• Dynamic SMT Support: We present a preliminary analysis to dynamically disengagesupport for simultaneous
multi-threading and improve single thread latency. This analysis suggests dynamic SMT support allows flexible
trade-offs between latency and throughput once an architecture has been designed.

Collectively, our findings suggest single-thread latency continues to be an important design metric to be included in any
optimization criteria. Arguments for simple, in-order cores should be taken with caution given that such designs appear to
emphasize only throughput, potentially at significant costto latency.

2 Related Work

There has been a burst of work in recent years to understand the performance, energy, and thermal efficiency of different
CMP organizations. Few have looked at a large numbers of cores.

Davis et al. [3] explore the design space for core type, number of cores, cache size, and degree of multi-threading, but
focus on maximizing throughput without regard for single-thread latency. They show that simple, shallow, in-order cores
with large numbers of threads per core are optimal. The reason is that multiple threads allow servicing of multiple cache
misses to be overlapped with modest hardware: only an extra register set per thread, instead of the expensive out-of-order
hardware required to exploit substantial memory-level parallelism within a single thread. This work focused on transaction
processing (OLTP) workloads, which tend to have poor instruction-level parallelism and poor cache locality, and found
4–8 threads per core to be optimal depending on workload. Several existing products embody this philosophy. Kongetira
et al. [9] describe the Sun T2000 “Niagara” processor, an eight-way multi-core chip supporting four threads per core and
targeted toward workloads with high degrees of thread-level parallelism. Chaudhry et al. [2] go on to describe the benefits
of both multiple cores and multiple threads and sharing eight cores with a single L2 cache. They also describe the Sun Rock
processor’s “scouting” mechanism that uses a helper threadto prefetch instructions and data. Graphics processors (GPUs)
also embody this philosophy, with large numbers of fairly general-purpose “shaders” (i.e., cores) and the ability to keep
many threads in flight. For example, the ATI R580 exhibits 56 shaders and can support 512 concurrent threads (where each
thread is servicing a pixel), while the Nvidia G71 series exhibits 32 shaders (but a larger number of texture units). Likethe
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T2000, GPUs stress throughput over single-thread (single-pixel) latency, and use the high degree of multithreading tomask
memory (chiefly texture) latency.

Li et al. [15] also explore the design space for core count, pipeline depth, out-of-order issue width, and L2 size, and show
the importance of thermal constraints, but only consider single-threaded cores. Their work focuses on single-threaded,
multi-programmed SPEC workloads. Monchiero et al. [16] explore a similar design space and also demonstrate the im-
portance of thermal constraints, but this time in the context of an assortment of parallel shared-memory applications.Li
and Martı́nez [12] instead focus on power constraints, but study the SPLASH parallel benchmarks. Their results show that
parallel execution on a CMP can improve energy efficiency compared to the same performance achieved via single-threaded
execution, and that even within the power budget of a single core, a CMP allows substantial speedups compared to single-
threaded execution. In [13], they go on to develop heuristics for dynamic adaption to allow a CMP to find the optimal
voltage/frequency settings and optimal number of cores to put to sleep to meet performance constraints while maximizing
power savings. In a related vein, Donald and Martonosi [4] develop heuristics for scheduling threads on a CMP to minimize
thermal throttling, while Powell et al. [18] instead propose a core-hopping approach on CMPs in response to imminent
thermal throttling.

Huh et al. [8] categorized the SPEC benchmarks into CPU-bound, cache-sensitive, or bandwidth-limited groups and
explored core complexity, area efficiency, and pin bandwidth limitations, concluding, as we do, that out-of-order cores are
generally preferable because of their greater area efficiency. Ekman and Stenstrom [5] use SPLASH benchmarks to explore
a similar design space in the context of energy-efficiency, arriving at the same conclusions. These papers did not, however,
account for the area overhead of on-chip memory controllers, since that is a fairly recent phenomenon.

Kumar et al. [10] consider the performance, power, and area impact of the interconnection network in CMP archi-
tecture. They advocate low degrees of sharing, but use transaction oriented workloads with high degrees of inter-thread
sharing. Since we are modeling throughput-oriented workloads consisting of independent threads, we follow the example
of Niagara [9] and employ a similar sharing strategy. In our experiments, each L2 cache bank is shared by four cores. Inter-
connection design parameters are not variable in our designspace at this time, and in fact constitute a sufficiently expansive
design space of their own that we consider this to be beyond the scope of the current paper.

The methodologies for analyzing pipeline depth and width build on prior work by Lee and Brooks [11] by developing
first-order models for capturing changes in core area as pipeline dimensions change, thereby enabling power density and
temperature analysis. We identify optimal pipeline dimensions in the context of CMP architectures whereas most prior
pipeline analyses consider single-core microprocessors [6, 7, 19]. Furthermore, most prior work in optimizing pipelines
focused exclusively on performance although Zyuban, et al.found 18FO4 delays to be power-performance optimal for a
single-threaded microprocessor [20].

3 Design Space Models

3.1 Design Space

We model the configurations of Table 1 drawn from the design space specified by Table 2. In addition to considering
issue width, data cache size, and issue style (i.e., in-order, out-of-order), we vary pipeline depth and L2 cache size for each
configuration to optimize throughput under various constraints. Performance, power, and area for varying pipeline depth
and width are estimated using prior models by Li, et. al. [15]. In particular, latencies scale linearly with the number offan-
out-of-four (FO4) delays per pipeline stage. A number of configurations implement 2-way simultaneous multi-threading
modeled by increasing microarchitectural resources by 1.5X and scaling associated unconstrained power in prior work by
Li, et. al. [14].

3.2 In-order Performance

In-order architectures (IO) differ from out-of-order architectures (OO) in their treatment of instruction dependencies.
IO architectures block issue if a previous instruction is stalled due to an instruction dependency. We model issue logic
to enforce in-order execution. Specifically, if an instruction is waiting for operands, all following instructions in program
order will be blocked. For contrast, instructions will not block on the an instruction waiting for operands in out-of-order
execution. Although we enforce in-order issue, we allow out-of-order retirement. Instructions in modern processors tend to
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Configuration 004SMT OO4 OO2 OS4 OS2 IO4SMT IO4 IO2 IS4 IS2

Microarchitectural Summary
Fetch/Issue Width 4/8 4/8 2/4 4/8 2/4 4/8 4/8 2/4 4/8 2/4
D-Cache Size 32KB 8KB 32KB 8KB
Execution out-of-order in-order

Area Summary
Area (19FO4,mm2) 11.22 8.38 8.68 6.45 12.89 9.85 7.46 7.31 5.52 10.61

Table 1. Design Summary

Microarchitectural Parameters

Execution in-order, out-of-order
Depth 18-36FO4, steps of 6FO4
Width 4,8 issue bandwidth
Register File {40GPR, 36FPR}in−order ,

{80GPR, 72FPR}out−of−order

Issue Queues {Issue Width}in−order ,
{40FXU, 10FPU, 36LSU, 12BR}out−of−order

L1 I-Cache 32KB
L1 D-Cache 2-128KB, factors of 4
L2 Cache 2-8MB, factors of 2

Table 2. Microarchitectural Parameters

have very different execution latencies and out-of-order retirement can improve the performance of our in-order architecture
with very little hardware overhead.

In addition to these changes to the fundamental pipeline logic, we reduce the sizes of microarchitectural resources from
those in the original OO design. For the same issue width, we halve the IO sizes of the physical register, load/store queue,
and retirement queue relative to OO sizes. We also set the IO issue queue size to the issue width since large issue queues
are unnecessary due to in-order execution.

3.3 In-order Power

We need to scale down the unconstrained power (i.e., power before clock gating effects are considered) for all resources
whose sizes are changed relative to the OO model. We use CACTI[21] to calculate the scaling factor for the L1 caches
and first-level TLB’s. Changes in pipeline width will impactpower attributed to functional units and SRAM arrays (via
additional ports). We assume unconstrained hold and switching power increases linearly with the number of functional
units and access ports, a valid assumption since we model an architecture with clustered functional units and replicated
caches for additional read ports [11]. For certain structures, linear power scaling may be optimistic and, for example,does
not capture non-linear relationships between power and thenumber of register file access ports since it does not account
for the additional circuitry required in a multi-ported SRAM cell. For this reason, we apply superlinear power scaling
with exponents drawn from Zyuban’s work in estimating energy growth parameters [22]. Since these parameters were
experimentally derived through analysis of a non-clustered architecture and we model a clustered architecture, we only
apply this power scaling to the non-clustered components ofour architecture.

Our power models do not consider the power benefits of decreasing hardware complexity for certain structures when
designing for IO instead of OO cores. For example, issue queues in an IO architecture can be much simpler due to simpler
wake-up and issue logic. However, the size of those resources in the IO model is very small (four to eight entry issue
queues) and power scaling to account for these effects will have little impact on the estimate of total power consumption.
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Fetch Decode

NFA Predictor 1 Multiple Decode 2
L2 I-Cache 11 Millicode Decode 2
L3 I-Load 8 Expand String 2
I-TLB Miss 10 Mispredict Cycles 3
L2 I-TLB Miss 50 Register Read 1

Execution Memory

Fix Execute 1 L1 D-Load 3
Float Execute 4 L2 D-Load 9
Branch Execute 1 L3 D-Load 77
Float Divide 12 Float Load 2
Integer Multiply 7 D-TLB Miss 7
Integer Divide 35 L2 D-TLB Miss 50
Retire Delay 2 StoreQ Forward 4

Table 3. Baseline Latencies

3.3.1 In-order Area

Table 1 presents the area estimates in 65nm technology for architectures in our design space. As in the power models, we
scale down the area for all resources whose sizes are changedrelative to the OO model. Area estimates for the L1 caches
and first-level TLB’s are obtained from CACTI. We assess the sensitivity of our findings to the area model in Section 5.3.

The core area may occupy less than 50% of the chip area in chip multiprocessors and it is important to model the area
of other on-chip structures, including the L2 cache (11.52mm2), DDR/DRAM controllers (0.96mm2), and interconnect
networks (11.40mm2). We estimate the on-chip L2 cache area from the IBM POWER4 die photo, scaling it to 65nm
technology. Our area estimates for DDR/DRAM controllers are based on the Sun Niagara die photo and its total chip
memory bandwidth. We assume a linear area scaling of DDR/DRAM controllers relative to the chip’s maximum pin
bandwidth. Finally, we assume every four cores share an L2 cache, and model a 4-way crossbar implemented in a high
metal layer as in previous work by Kumar et. al. [10].

The L1 cache structure may be responsible for more than half the core area and therefore properly selecting the size
for these structures is critical to chip area efficiency. We sweep several L1 cache sizes, adjusting all related on-core cache
structures proportionally, and evaluate performance and power-performance efficiency (BIPS3/W ). As shown in Figure 1,
the bestBIPS/Area andBIPS3/(W ·Area) are achieved with 8KB or 32KB L1 data caches for almost all architectures.
Therefore, we perform all following experiments with thesetwo L2 cache sizes.
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Figure 1. BIPS/Area and BIPS3/(W ·Area) of varying L1 data cache sizes.
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4 Experimental Methodology

4.1 Simulation Framework

We employ Zauber to tractably simulate a large number of cores and core designs, a simulation methodology that de-
couples the simulation of individual cores from the simulation of chip fabric and L2 cache [15]. We first use Turan-
dot/PowerTimer, a cycle-accurate trace-driven simulatorto collect core performance and power characteristics for 10K
instruction segments [1, 17]. Turandot/PowerTimer originally modeled a POWER4-like out-of-order architecture, buthas
been extended for design space exploration. The simulator has also been modified to generate traces of single-core L2 cache
access patterns. Zauber, a shared L2 cache and fabric simulator, uses these access patterns to interpolate performanceand
power results for various chip multiprocessor configurations. By separately simulating the L2 and fabric, Zauber accelerates
CMP simulation. We also use a simplified temperature model validated against Hotspot 2.0 to estimate thermal effects at
core granularity [15].

4.2 Design Metrics and Constraints

We evaluate the design space for performance, differentiating between single thread latency and aggregate throughput.
We also evaluate designs for power and thermal efficiency by comparing the performance of chips with heatsinks of varying
effectiveness. In addition to these optimization criteria, we impose hard physical constraints on the total chip power(250W)
and peak temperature (100 C). If these constraints are reached, we use voltage scaling to throttle chip speed and ensure
these constraints are satisfied. We also consider two different area constraints (200, 400mm2) corresponding to different
CMP markets. We examine three different pin bandwidth constraints (24, 48, 96 GB/s). As with power and temperature,
if the chip reaches pin bandwidth limitations, the chip is throttled to ensure average bandwidth does not exceed maximum
available bandwidth. We do not consider the burdens of bursty traffic on chip pin bandwidth in this work.

4.3 Benchmarks Methodology

We use two benchmarks (JBB, MCF) for case studies to demonstrate our approach for quantifying trade-offs between
single-thread latency and aggregate throughput under various physical constraints in a comprehensive design space. We do
not leverage any particular feature of these benchmarks andour approach is generally applicable. These single-threaded
applications are representative of workloads that may require trade-offs between latency and throughput since they exhibit
task-level parallelism but may still require low single-thread latency.

• JBB represents an e-commerce workload. Certain markets or customers may require guaranteed response times in
tiered service-level agreements. SpecJBB is interesting because it is insensitive to L1 cache size and produces signif-
icant off-chip traffic regardless of L2 cache size. This benchmark also benefits from the instruction level parallelism
of OO cores.

• MCF computes a minimum-cost-network for traffic routing and is representative of decision support applications that
may require interactive responses or iteratively refine their answer, delivering the best available answer within a given
time. The MCF benchmark has a 2MB working set and is thus extremely memory bound unless 2MB of L2 cache
per thread is available.

5 Results

We takesingle thread latencyas the delay for a billion instructions of a particular thread. In contrast, we takeaggregate
delayas the delay for a billion instructions across all thread contexts. Aggregate delay is equivalent to the inverse of aggre-
gate throughput measured in BIPS. We first characterize the latency and throughput trade-offs of designs in Table 1 when
optimizing for throughput and neglecting latency. Introducing latency into the optimization, we then maximize throughput
for a range of latency targets. Recognizing the recent trendtoward simpler, smaller cores, we assess the sensitivity ofour
results to smaller in-order core areas. However, as area percore decreases and the number of cores per chip increases,
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Configuration Cores Depth (FO4) L2 Cache (MB) Voltage (V)

OS2 28 24 2 1.00
OS2SMT 20 24 8 0.97
OS4 20 36 8 1.00
OS4SMT 16 30 8 0.96
OO2 24 24 2 1.00
OO2SMT 20 30 4 1.00
OO4 20 30 2 1.00
OO4SMT 16 36 4 1.00
IS2 28 24 4 1.00
IS2SMT 24 18 4 0.90
IS4SMT 20 30 8 0.97
IO2 24 24 4 1.00
IO2SMT 20 18 4 0.92
IO4SMT 20 30 4 0.98

Table 4. Throughput Optimized Designs of Figure 2

pin bandwidth becomes increasingly relevant and we will examine the sensitivity of our results to bandwidth constraints.
Lastly, we assess the potential of dynamic simultaneous multi-threading (SMT) capabilities in which a core design for SMT
restricts itself to one thread.

5.1 Design Space Characterization
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Figure 2. [JBB] :: Single thread latency versus aggregate delay (inverse throughput).

Figure 2 plots JBB single thread latency against aggregate throughput for the architectures of Table 1. Each point in this
figure displays the throughput optimized configuration chosen from various core counts, pipeline depths, L2 cache sizes,
and voltage scaling levels identified by Table 4 to meet thermal constraints. This figure shows that OO configurations tend
to have both the lowest single thread latency and the lowest aggregate delay (i.e., highest aggregate throughput). Thistrend
is partly because OO cores are designed with relatively shallow pipelines and modest L2 caches, but primarily because the
OO architectures we consider inherently achieve better performance andBIPS3/(W ·Area). For both JBB and MCF, such
architectures are an area efficient way to improve the numberof instructions executed per cycle.

Introducing SMT improves throughput for both OO and IO designs. Holding the number of simultaneous threads con-
stant at 2 while increasing superscalar width from 2 to 4 willgenerally improve throughput for OO configurations as more
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resources are supplied for the same demand. However, increasing the number of threads per pipeline does not necessar-
ily help IO cores because such cores do not favor wider pipelines as a means to exploit instruction level parallelism. For
relatively narrow pipelines, we find the throughput gains ofsimultaneous multi-threading are achieved at the expense of
single thread latency. For example, the optimal IS2 design achieves aggregate delay and single thread latency of 0.065 and
1.706 secs/billion instructions. In contrast, the optimalIS2SMT design achieves delay and latency of 0.055 and 2.661.In
effect, multi-threading for IS2 designs will reduce aggregate delay by 15% while increasing single thread latency by 56%.
Similarly, multi-threading for IO2 designs will reduce aggregate delay by 21% while increasing individual thread latency
by 32%.

5.2 Sensitivity to Latency Constraints

As shown by the previous characterization of single thread latency and aggregate delay (inverse throughput), significant
latency penalties may by incurred if latency is neglected when optimizing for throughput. For this reason, the optimization
criteria should include particular latency targets. Specifically, we consider the sensitivity of the optimization problem given
latency constraints by restricting candidate solutions tothose with single thread latencies withinn% of a previous generation
design. We take our POWER4-like baseline as our reference and sweepn from 10% to 90%. For each design in Table 1, we
optimize for total throughput after meeting the latency constraint. Note that some designs are not able to achieve the latency
target and we omit their results. After optimizing core count, pipeline depth, L2 cache size, and voltage scaling to maximize
throughput for a latency target, we again consider our two performance metrics: single thread latency and aggregate delay
(i.e., inverse throughput).
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Figure 3. [JBB,400mm2,LR] :: Single thread latency (L) and aggregate delay (R) versus latency constraint

We first present results for SpecJBB with both the low-resistance (LR) and high-resistance (HR) heatsinks (Figures 3–4).
Figure3L shows the single-thread latency for each architectural configuration. Forn > 50% no in-order configurations
are viable. We also see the well known trend that SMT architectures can hurt single-thread latency; the best in-order SMT
configurations can only meet the 40% latency constraint and even the OO4SMT configuration is only able to meet the 60%
latency constraint.

Figure3R shows the optimized aggregate delay (inverse throughput) for the designs of Figure 3L. The OO4SMT configu-
ration achieves the best throughput up to the 40% constraint, after which the OO4 configuration achieves better throughput.
The best in-order configuration, IO2SMT, is competitive with each of the other out-of-order architectures OO4SMT and
OO4 up to the 30% constraint, but is otherwise unable to achieve both the low single thread latency and high aggregate
throughput of the OO designs. This observation is also true for IO configurations without SMT. If target design requires
single-thread latency closer to the previous generation (e.g. within 50%), then the OO4 configuration achieves the best
throughput. If strict single thread latency requirements are enforced, all other architectures must sacrifice throughput for
single thread latency (for example, by moving to a deeper pipeline or increasing L1 cache sizes) while the OO architecture
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can maintain near peak throughput without compromising latency.
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Figure 4. [JBB,400mm2,HR] :: Single thread latency (L) and aggregate delay (R) versus latency constraint

Figure4L repeats the analysis after imposing harsher thermal constraints by replacing the low-resistance heatsink with a
high-resistance heatsink. Compared to the LR case, many more configurations are eliminated from consideration as they
violate the latency targets as the apply severe DVFS throttling in efforts to meet thermal constraints. Although the reference
POWER4-like architecture also uses a high-resistance heatsink, the increased core count in throughput optimized designs
induces significant global heatup via the heat spreader to cause additional throttling. Overall, additional thermal constraints
reduce the differences in single thread latency between IO and OO designs. As shown in Figure 4L, the IO2 design achieves
the lowest single-thread latency at the 40% constraint and the IO2SMT design is very close to best at the 30% constraint.
At the 50% latency constraint, all in-order designs are eliminated and OO2 design is favored for its superior power, and as
a result, thermal characteristics relative to OO4. Thus, under severe thermal constraints simpler cores can achieve lower
latency than the OO4 core.

Figure4R shows the aggregate throughput with the HR configuration. We find that the IO2SMT and the OO4SMT
configuration are comparable, with both achieving aggregate delays of approximately 0.115 seconds per billion instructions
at the 10% and 20% latency constraints. With constraints less than 30% many configurations are quite close and OO4 is
only clearly better when the constraint exceeds 40%.

Figures 5–6 present similar results for MCF. Overall, the trends observed for JBB are also valid for MCF. exhibiting
a wide spread in single-thread latency between IO and OO configurations. When considering aggregate delay (inverse
throughput), the OO SMT configurations are clearly the best choices for the smaller latency constraints ranging from 10%
to 40%. We observe IO architectures generally cannot achieve the latency targets greater than 60% of baseline. For latency
targets less than 60%, OO designs achieves lower aggregate delay and higher aggregate throughput relative to IO designs.
Mcf is a memory bound benchmark and tends to favor large L2 caches in the optimal configuration. This further weakens
the area advantage of IO architectures as the L2 cache occupies a larger portion of the chip area. Given the smaller area
budget for processing cores, in-order designs cannot exploit their low area as effectively, placing additional cores for greater
throughput. Thus, chips with larger caches will favor OO over IO designs for a given area budget.

5.3 Sensitivity to In-Order Area

In-order cores tend to be smaller than out-of-order cores asseveral resources supporting out-of-order execution (e.g.,
register rename tables, issue queues) become unnecessary.Reducing the area of other non-core on-chip structures will
further improve the relative area advantage of IO designs. This IO area advantage translates into an increased core count for
a given area budget that favors aggregate throughput. Recognizing the recent trend toward simpler, smaller cores, we assess
the sensitivity of our results to more aggressive estimatesof in-order core area. First, the interconnection area and power
are reduced to 10% of the original assumption. We then consider IO core area reductions of 10%, 30%, and 50% relative to
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Figure 5. [MCF,400mm2,LR] :: Single thread latency (L) and aggregate delay (R) versus latency constraint
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Figure 6. [MCF,400mm2,HR] :: Single thread latency (L) and aggregate delay (R) versus latency constraint

the original area estimates while keeping OO core area estimates unchanged. We constrain the total chip area to 200mm2

and pin bandwidth to 48GB/s.
Figure 7 presents the improvements in JBB aggregate delay (inverse throughput) resulting from smaller per core area

and a greater number of cores per chip. As the reduced area estimates become increasingly optimistic (50% to 90%), we
observe aggregate delay reductions of up to 40%. For example, Figure 7L indicates, for a low-resistance heatsink, aggregate
delay falls 41% from 0.081 to 0.048 and and 21% from 0.053 to 0.042 seconds per billion instructions for IO2 and IO2SMT,
respectively. Similarly for a high-resistance heatsink ofFigure 7R, aggregate delay falls 42% and 41% for IO2 and IO2SMT.
The high-resistance heatsink favors the power and thermal characteristics of IO cores. For example, IO2SMT cores with
70% and 90% area reductions achieve 22% and 44% lower aggregate delay relative to OO4SMT, the highest throughput OO
core. However, in nearly all cases, the throughput optimal IO designs exhibit worse single thread latency than OO designs.

In contrast, Figure 8 indicates that even if we assume 50% IO area reductions, the throughput maximizing IO configu-
ration is only comparable to the best OO configuration. Aggregate delays for IS2 and OO4SMT differ by only 5% or 6%
regardless of heatsink effectiveness. MCF is a memory boundworkload and tends to favor larger L2 caches in its optima.
Thus, the area advantages of IO designs are limited as core area budgets are constrained to favor larger cache area budgets.
Illustrating this effect, the throughput of IS2SMT in Figure 8L is unchanged despite area scaling from 90% to 50%. Adding
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Figure 7. [JBB] :: Single thread latency, aggregate throughput sensitivity to area reductions with LR (L) and HR (R)

heatsinks

cores while holding L2 cache sizes constant results in much higher cache miss rates, negative aggregate throughput return,
and higher pin bandwidth requirements. Addressing these bottlenecks by increasing L2 cache sizes to hold working sets
from additional cores will exceed the chip area constraint.More severe thermal constraints could favor IO architectures as
shown in Figure 8R. Even in this case, only IS2 with the most optimistic area reductions achieves lower aggregate delay
and greater throughput than the best OO design (5% difference from OO4SMT).

5.4 Sensitivity to Bandwidth Constraints

As area per core decreases and the number of cores per chip increases, pin bandwidth becomes an increasingly relevant
challenge for multiprocessor designers. We assess the sensitivity of our results to pin bandwidth constraints. We model
increased pin bandwidth by increasing the total number of DDR channels on the die and consider total chip bandwidth of
24, 48 or 96 GB/s. Since these additional channels require additional area that may restrict the number of cores or L2 cache
on the chip, more pin bandwidth can actually be detrimental to total throughput depending on the exact trade-offs.

Figure 9 presents the single thread latency and aggregate delay trade-offs under pin bandwidth constraints for JBB and
MCF. The 96GB/s point is identified for each design. 48 and 24GB/s are identified by moving along connecting lines. In
several cases, additional pin bandwidth is essential. For example, OO4SMT of Figure 9L requires additional pin bandwidth
reduces latency while increasing total throughput and 96GB/s maximizes the overall performance of JBB on this design.
In other cases, additional pin bandwidth appears less important as the performance benefits of additional bandwidth do not
justify the additional area overhead of the associated DDR channels. For example, IO2SMT and OO2 achieve the lowest
aggregate delays with 48GB/s. Figure 9R suggests pin bandwidth is less performance critical for MCF OO designs. For
example, OO2 and OO4SMT achieve lower latency and greater throughput, respectively, with 24GB/s. In contrast, the IO2
designs require significant off-chip bandwidth to reduce single thread latency, mitigating increased demands on the memory
hierarchy from a large number of small cores.

5.5 Dynamic SMT Support

While our results suggest simultaneous multi-threading (SMT) support is an efficient mechanism for achieve high
throughput, we need to be cognizant of single thread latency. Dynamically making SMT available will enable greater single
thread latency is valued over aggregate throughput. Figure10 evaluates the latency and throughput trade-offs for turning
off SMT support for an SMT design. Each line in the figure connects latency-throughput points of designs with SMT on
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Figure 8. [MCF] :: Single thread latency, aggregate throughput sensitivity to area reductions with LR (L) and HR (R)

heatsinks

(upper-left) and off(lower-right). Turning off SMT for an SMT core improves single thread performance between 21%
(IO2SMT) and 43% (OO4SMT) for all architectures by eliminating pipeline resource contention. However, disengaging
SMT support will incur aggregate throughput penalties between 15% (OS2SMT) and 31% (IO2SMT). Thus, dynamically
turning off SMT support may be a viable technique to adjust the trade-off between single thread latency and aggregate
throughput for a given architecture.

6 Conclusions

This work provides a comprehensive analysis of CMP design when considering performance in terms of both single-
thread latency and aggregate chip throughput. We perform this analysis under a variety of technological constraints, includ-
ing area, thermal, energy, and pin-bandwidth limitations.Considering such a large space of parameters requires significant
infrastructure development and careful attention to experimental methodology.

Overall, out-of-order cores remain competitive for chip multiprocessors when the single thread latency penalties of
simpler in-order cores are considered. More generally, we believe design space studies must increasingly take a balanced
view of performance to include both latency and throughput.Maximizing throughput by providing a large number of
computational threads will continue to be important, throughput must be optimized in conjunction with other design metrics
and constraints. The recognition that not all applicationsare throughput oriented suggests designs may require a mixture of
low single thread latency and high aggregate throughput. Our findings suggest out-of-order execution may still be the best
approach to achieve this mixture.
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[16] M. Monchiero, R. Canal, and A. González. Design space exploration for multicore architectures: A power/performance/thermal view. InProceedings
of the 20th International Conference on Supercomputing, June 2006.

[17] M. Moudgill, P. Bose, and J. Moreno. Validation of Turandot, a fast processor model for microarchitecture exploration. In Proceedings of the IEEE
International Performance, Computing, and Communications Conference (IPCCC), pages 451–457, Feb. 1999.

[18] M. D. Powell, M. Gomaa, and T. N. Vijaykumar. Heat-and-run: Leveraging SMT and CMP to manage power density through the operating system.
In Proceedings of the Eleventh International Conference on Architectural Support for Programming Languages and Operating Systems, Oct. 2004.

[19] E. Sprangle and D. Carmean. Increasing processor performance by implementing deeper pipelines. InProceedings of the 29th Annual ACM/IEEE
International Symposium on Computer Architecture, pages 25–34, May 2002.

[20] V.Zyuban, D.Brooks, V.Srinivasan, M.Gschwind, P.Bose, P.Strenski, and P.Emma. Integrated analysis of power andperformance for pipelined
microprocessors.IEEE Transactions on Computers, 53(8), August 2004.

[21] S. J. E. Wilton and N. P. Jouppi. Cacti: An enhanced cacheaccess and cycle time model.IEEE Journal of Solid-State Circuits, 31(5):677–88, May.
1996.

[22] V. Zyuban. Inherently Lower-power High-performance Superscalar Architectures. PhD thesis, Univ. of Notre Dame, Mar. 2000.

13



IO2SMT 

IS2SMT 

OO4SMT 

OS4SMT 

OO2SMT 

OS2SMT 

0

0.5

1

1.5

2

2.5

3

0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075

Aggregate Delay

S
in
g
le
 T
h
re
a
d
 L
a
te
n
cy

Figure 10. Dynamic SMT Capability
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