Whatmough N, Sae Lee, Hyunkwang Lee, Saketh Rama, David Brooks, and Gu Wei. 2/5/2017. “
14.3 A 28nm SoC with a 1.2 GHz 568nJ/prediction sparse deep-neural-network engine with> 0.1 timing error rate tolerance for IoT applications.” In 2017 IEEE International Solid-State Circuits Conference (ISSCC), Pp. 242–243. IEEE.
Publisher's VersionAbstractThis paper presents a 28nm SoC with a programmable FC-DNN accelerator design that demonstrates: (1) HW support to exploit data sparsity by eliding unnecessary computations (4× energy reduction); (2) improved algorithmic error tolerance using sign-magnitude number format for weights and datapath computation; (3) improved circuit-level timing violation tolerance in datapath logic via timeborrowing; (4) combined circuit and algorithmic resilience with Razor timing violation detection to reduce energy via VDD scaling or increase throughput via FCLK scaling; and (5) high classification accuracy (98.36% for MNIST test set) while tolerating aggregate timing violation rates >10-1. The accelerator achieves a minimum energy of 0.36μJ/pred at 667MHz, maximum throughput at 1.2GHz and 0.57μJ/pred, or a 10%-margined operating point at 1GHz and 0.58μJ/pred.
14.3 A 28nm SoC with a 1.2 GHz 568nJ/prediction sparse deep-neural-network engine with> 0.1 timing error rate tolerance for IoT applications Simon Chaput, David Brooks, and Gu Wei. 2/2/2017. “
21.5 A 3-to-5V input 100V pp output 57.7 mW 0.42% THD+ N highly integrated piezoelectric actuator driver.” In 2017 IEEE International Solid-State Circuits Conference (ISSCC), Pp. 360–361. San Francisco, CA, USA: IEEE.
Publisher's VersionAbstractPiezoelectric actuators are used in a growing range of applications, e.g., haptic feedback systems, cooling fans, and microrobots. However, to fully realize their potential, these actuators require drivers able to efficiently generate high-voltage (>100V pp ) low frequency (<;300Hz) analog waveforms from a low-voltage source (3-to-5V) with small form factor. Certain applications, such as piezoelectric (PZT) cooling fans, further demand low distortion waveforms (THD+N <; 1%) to minimize sound emission from the actuator. Existing solutions for small PZT drivers typically rely on designs comprising a power converter to step up a low voltage followed by a high-voltage amplifier [1,2,3]. Although envelope tracking can help reduce amplifier power [3], none of these designs can recover the energy stored on the actuator to maximize efficiency. And while a differential bidirectional flyback converter [4] can recover energy, it requires four inductors, thereby incurring large size penalty. This paper introduces a single-inductor, highly integrated, bidirectional, high-voltage actuator driver that achieves 12.6× lower power and 2.1× lower THD+N at a similar size to the currently available state-of-the art solution [1]. Measured results from an IC prototype demonstrate 200Hz sinusoidal waveforms up to 100V pp with 0.42% THD+N from a 3.6V source while dissipating 57.7mW to drive a 150nF capacitor. Beyond PZT actuators, the IC can also drive any type of capacitive load, e.g., electrostatic and electroactive polymer actuators.
21.5 A 3-to-5V input 100V pp output 57.7 mW 0.42% THD+ N highly integrated piezoelectric actuator driver Robert Adolf, Saketh Rama, Brandon Reagen, Gu Wei, and David Brooks. 2017. “
The Design and Evolution of Deep Learning Workloads.” IEEE MICRO, 37, 1, Pp. 18–21.
The Design and Evolution of Deep Learning Workloads