Xuning Chen, Shiuan Peh, Gu Wei, Kai Huang, and Paul Prucnal. 2/12/2005. “
Exploring the design space of power-aware opto-electronic networked systems.” In 11th International Symposium on High-Performance Computer Architecture, Pp. 120–131. San Francisco, CA, USA: IEEE.
Publisher's VersionAbstractAs microprocessors become increasingly interconnected, the power consumed by the interconnection network can no longer be ignored. Moreover, with demand for link bandwidth increasing, optical links are replacing electrical links in inter-chassis and inter-board environments. As a result, the power dissipation of optical links is becoming as critical as their speed. In this paper, we first explore options for building high speed optoelectronic links and discuss the power characteristics of different link components. Then, we propose circuit and network mechanisms that can realize power-aware optical links -links whose power consumption can be tuned dynamically in response to changes in network traffic. Finally, we incorporate power control policies along with the power characterization of link circuitry into a detailed network simulator to evaluate the performance cost and power savings of building power aware optoelectronic networked systems. Simulation results show that more than 75% savings in power consumption can be achieved with the proposed power aware optoelectronic network.
Exploring the design space of power-aware opto-electronic networked systems Yingmin Li, K Skadron, David Brooks, and Zhigang Hu. 2/12/2005. “
Performance, energy, and thermal considerations for SMT and CMP architectures.” In High-Performance Computer Architecture, 2/12/2005. HPCA-11. 11th International Symposium on, Pp. 71–82. IEEE.
Publisher's VersionAbstractSimultaneous multithreading (SMT) and chip multiprocessing (CMP) both allow a chip to achieve greater throughput, but their relative energy-efficiency and thermal properties are still poorly understood. This paper uses Turandot, PowerTimer, and HotSpot to explore this design space for a POWER4/POWER5-like core. For an equal-area comparison with this style of core, we find CMP to be superior in terms of performance and energy-efficiency for CPU-bound benchmarks, but SMT to be superior for memory-bound benchmarks due to a larger L2 cache. Although both exhibit similar peak operating temperatures and thermal management overheads, the mechanism by which SMT and CMP heat up are quite different. More specifically, SMT heating is primarily caused by localized heating in certain key structures, CMP heating is mainly caused by the global impact of increased energy output. Because of this difference in heat up mechanism, we found that the best thermal management technique is also different for SMT and CMP Indeed, non-DVS localized thermal-management can outperform DVS for SMT. Finally, we show that CMP and SMT scales differently as the contribution of leakage power grows, with CMP suffering from higher leakage due to the second core's higher temperature and the exponential temperature-dependence of subthreshold leakage.
Performance, energy, and thermal considerations for SMT and CMP architectures