Thread motion: fine-grained power management for multi-core systems

Citation:

Krishna Rangan, Gu Wei, and David Brooks. 6/2009. “Thread motion: fine-grained power management for multi-core systems.” In ACM SIGARCH Computer Architecture News, 3rd ed., 37: Pp. 302–313. ACM. Publisher's Version

Abstract:

Dynamic voltage and frequency scaling (DVFS) is a commonly-used power-management scheme that dynamically adjusts power and performance to the time-varying needs of running programs. Unfortunately, conventional DVFS, relying on off-chip regulators, faces limitations in terms of temporal granularity and high costs when considered for future multi-core systems. To overcome these challenges, this paper presents thread motion (TM), a fine-grained power-management scheme for chip multiprocessors (CMPs). Instead of incurring the high cost of changing the voltage and frequency of different cores, TM enables rapid movement of threads to adapt the time-varying computing needs of running applications to a mixture of cores with fixed but different power/performance levels. Results show that for the same power budget, two voltage/frequency levels are sufficient to provide performance gains commensurate to idealized scenarios using per-core voltage control. Thread motion extends workload-based power management into the nanosecond realm and, for a given power budget, provides up to 20% better performance than coarse-grained DVFS.

Last updated on 04/28/2022