Software Defined Accelerators From Learning Tools Environment


Antonino Tumeo, Marco Minutoli, Giovanni Castellana, Joseph Manzano, Vinay Amatya, David Brooks, and Gu Wei. 7/20/2020. “Software Defined Accelerators From Learning Tools Environment.” In 2020 57th ACM/IEEE Design Automation Conference (DAC), Pp. 1–6. IEEE. Publisher's Version


Next generation systems, such as edge devices, will need to provide efficient processing of machine learning (ML) algorithms along several metrics, including energy, performance, area, and latency. However, the quickly evolving field of ML makes it extremely difficult to generate accelerators able to support a wide variety of algorithms. At the same time, designing accelerators in hardware description languages (HDLs) by hand is hard and time consuming, and does not allow quick exploration of the design space. In this paper we present the Software Defined Accelerators From Learning Tools Environment (SODALITE), an automated open source high-level ML framework-to-verilog compiler targeting ML Application-Specific Integrated Circuits (ASICs) chiplets. The SODALITE approach will implement optimal designs by seamlessly combining custom components generated through high-level synthesis (HLS) with templated and fully tunable Intellectual Properties (IPs) and macros, integrated in an extendable resource library. Through a closed loop design space exploration engine, developers will be able to quickly explore their hardware designs along different dimensions.
Last updated on 04/20/2022