Privacy-Preserving Machine Learning

Maximilian Lam, Michael Mitzenmacher, Vijay Janapa Reddi, Gu-Yeon Wei, and David Brooks. 3/5/2022. “Tabula: Efficiently Computing Nonlinear Activation Functions for Secure Neural Network Inference”. Publisher's VersionAbstract
Multiparty computation approaches to private neural network inference require significant communication between server and client, incur tremendous runtime penalties, and cost massive storage overheads. The primary source of these expenses is garbled circuits operations for nonlinear activation functions (typically ReLU), which require on the order of kilobytes of data transfer for each individual operation and tens of kilobytes of preprocessing storage per operation per inference. We propose a replacement for garbled circuits: Tabula, an algorithm to securely and efficiently perform single operand nonlinear functions for private neural network inference. Tabula performs a one time client initialization procedure with the help of a trusted third party (or via using fully homomorphic encryption), operates over smaller finite fields whose elements are representable with less than 16 bits, and employs a lookup table which stores the encrypted results of nonlinear operations over secretly shared values. We show Tabula is secure under a semi-honest threat model, allowing it to be used as a replacement for garbled circuits operations. Our results show that for private neural network inference, Tabula eliminates communication by a factor of more than 50×, enables speedups over 10×, and reduces storage costs from O(n) to O(1).
Tabula: Efficiently Computing Nonlinear Activation Functions for Secure Neural Network Inference
Maximilian Lam, Gu-Yeon Wei, David Brooks, Vijay Janapa Reddi, and Michael Mitzenmacher. 6/2021. “Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix”. Publisher's VersionAbstract
We show that aggregated model updates in federated learning may be insecure. An untrusted central server may disaggregate user updates from sums of updates across participants given repeated observations, enabling the server to recover privileged information about individual users' private training data via traditional gradient inference attacks. Our method revolves around reconstructing participant information (e.g: which rounds of training users participated in) from aggregated model updates by leveraging summary information from device analytics commonly used to monitor, debug, and manage federated learning systems. Our attack is parallelizable and we successfully disaggregate user updates on settings with up to thousands of participants. We quantitatively and qualitatively demonstrate significant improvements in the capability of various inference attacks on the disaggregated updates. Our attack enables the attribution of learned properties to individual users, violating anonymity, and shows that a determined central server may undermine the secure aggregation protocol to break individual users' data privacy in federated learning.
Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix
Brandon Reagen, Wooseok Choi, Yeongil Ko, Vincent Lee, Gu Wei, Lee S, and David Brooks. 10/8/2020. “Cheetah: Optimizations and Methods for PrivacyPreserving Inference via Homomorphic Encryption”. Publisher's VersionAbstract
As the application of deep learning continues to grow, so does the amount of data used to make predictions. While traditionally, big-data deep learning was constrained by computing performance and off-chip memory bandwidth, a new constraint has emerged: privacy. One solution is homomorphic encryption (HE). Applying HE to the client-cloud model allows cloud services to perform inference directly on the client's encrypted data. While HE can meet privacy constraints, it introduces enormous computational challenges and remains impractically slow in current systems.
This paper introduces Cheetah, a set of algorithmic and hardware optimizations for HE DNN inference to achieve plaintext DNN inference speeds. Cheetah proposes HE-parameter tuning optimization and operator scheduling optimizations, which together deliver 79x speedup over the state-of-the-art. However, this still falls short of plaintext inference speeds by almost four orders of magnitude. To bridge the remaining performance gap, Cheetah further proposes an accelerator architecture that, when combined with the algorithmic optimizations, approaches plaintext DNN inference speeds. We evaluate several common neural network models (e.g., ResNet50, VGG16, and AlexNet) and show that plaintext-level HE inference for each is feasible with a custom accelerator consuming 30W and 545mm^2.
Cheetah: Optimizations and Methods for PrivacyPreserving Inference via Homomorphic Encryption