MEMTI: Optimizing On-Chip Nonvolatile Storage for Visual Multitask Inference at the Edge

Citation:

Marco Donato, Lillian Pentecost, David Brooks, and Gu Wei. 10/4/2019. “MEMTI: Optimizing On-Chip Nonvolatile Storage for Visual Multitask Inference at the Edge.” IEEE MICRO, 39, 6. Publisher's Version

Abstract:

The combination of specialized hardware and embedded nonvolatile memories (eNVM) holds promise for energy-efficient deep neural network (DNN) inference at the edge. However, integrating DNN hardware accelerators with eNVMs still presents several challenges. Multilevel programming is desirable for achieving maximal storage density on chip, but the stochastic nature of eNVM writes makes them prone to errors and further increases the write energy and latency. In this article, we present MEMTI, a memory architecture that leverages a multitask learning technique for maximal reuse of DNN parameters across multiple visual tasks. We show that by retraining and updating only 10% of all DNN parameters, we can achieve efficient model adaptation across a variety of visual inference tasks. The system performance is evaluated by integrating the memory with the open-source NVIDIA deep learning architecture.
See also: eNVM
Last updated on 04/21/2022