Enabling on-chip switching regulators for multi-core processors using current staggering

Citation:

Wonyoung Kim, Meeta Gupta, Gu-Wei, and David Brooks. 2007. “Enabling on-chip switching regulators for multi-core processors using current staggering.” Proceedings of the Work. on Architectural Support for Gigascale Integration.

Abstract:

Portable, embedded systems place ever-increasing demands on high-performance, low-power microprocessor design. Dynamic voltage and frequency scaling (DVFS) is a wellknown technique to reduce energy in portable systems, but DVFS effectiveness suffers from the fact that voltage transitions occur on the order of tens of microseconds. Voltage regulators that are integrated on the same chip as the microprocessor core provide the benefit of both nanosecond-scale voltage switching and improved power delivery. However, the implementation of on-chip regulators presents many challenges including regulator efficiency and output voltage transient characteristics. In this paper, we discuss architectural support for on-chip regulator designs. Specifically, we show that in a chip-multiprocessor system, current staggering can be employed by restricting the simultaneous enabling/disabling of cores due to clock gating. We discuss tradeoffs between current staggering and regulator circuit design parameters, and we show that regulation efficiency of greater than 80% is possible for a variety of multi-threaded applications.

Last updated on 05/02/2022