A Case for Efficient Accelerator Design Space Exploration via Bayesian Optimization

Citation:

Brandon Reagen, Jose Hernandez-Lobato, Robert Adolf, Michael Gelbart, Paul Whatmough, Gu Wei, and David Brooks. 7/24/2017. “A Case for Efficient Accelerator Design Space Exploration via Bayesian Optimization.” In International Symposium on Low Power Electronics and Design. Taipei, Taiwan. Publisher's Version

Abstract:

In this paper we propose using machine learning to improve the design of deep neural network hardware accelerators. We show how to adapt multi-objective Bayesian optimization to overcome a challenging design problem: optimizing deep neural network hardware accelerators for both accuracy and energy efficiency. DNN accelerators exhibit all aspects of a challenging optimization space: the landscape is rough, evaluating designs is expensive, the objectives compete with each other, and both design spaces (algorithmic and microarchitectural) are unwieldy. With multi-objective Bayesian optimization, the design space exploration is made tractable and the design points found vastly outperform traditional methods across all metrics of interest.
Last updated on 04/23/2022