Publications by Author: D. Brooks

2022
L. Pentecost, A. Hankin, M. Donato, M. Hempstead, G.-Y. Wei, and D. Brooks. 4/2/2022. “NVMExplorer: A Framework for Cross-Stack Comparisons of Embedded Non-Volatile Memories.” In 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). Seoul, South Korea. Publisher's VersionAbstract
Repeated off-chip memory accesses to DRAM drive up operating power for data-intensive applications, and SRAM technology scaling and leakage power limits the efficiency of embedded memories. Future on-chip storage will need higher density and energy efficiency, and the actively expanding field of emerging, embeddable non-volatile memory (eNVM) technologies is providing many potential candidates to satisfy this need. Each technology proposal presents distinct trade-offs in terms of density, read, write, and reliability characteristics, and we present a comprehensive framework for navigating and quantifying these design trade-offs alongside realistic system constraints and application-level impacts. This work evaluates eNVM-based storage for a range of application and system contexts including machine learning on the edge, graph analytics, and general purpose cache hierarchy, in addition to describing a freely available (this http URL) set of tools for application experts, system designers, and device experts to better understand, compare, and quantify the next generation of embedded memory solutions.
2109.01188.pdf
2021
M. M. Sharifi, L. Pentecost, R. Rajaei, A. Kazemi, Q. Lou, G.-Y. Wei, D. Brooks, K. Ni, X. S. Hu, M. Niemier, and M. Donato. 7/26/2021. “Application-driven Design Exploration for Dense Ferroelectric Embedded Non-volatile Memories.” In Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED ’21. Boston, MA, USA. Publisher's VersionAbstract
The memory wall bottleneck is a key challenge across many data-intensive applications. Multi-level FeFET-based embedded non-volatile memories are a promising solution for denser and more energy-efficient on-chip memory. However, reliable multi-level cell storage requires careful optimizations to minimize the design overhead costs. In this work, we investigate the interplay between FeFET device characteristics, programming schemes, and memory array architecture, and explore different design choices to optimize performance, energy, area, and accuracy metrics for critical data-intensive workloads. From our cross-stack design exploration, we find that we can store DNN weights and social network graphs at a density of over 8MB/mm 2 and sub-2ns read access latency without loss in application accuracy.
Application-driven Design Exploration for Dense Ferroelectric Embedded Non-volatile Memories