Applications of Deep Neural Networks for Ultra Low Power IoT


Sreela Kodali, Patrick Hansen, Niamh Mulholland, Paul Whatmough, David Brooks, and Gu Wei. 11/5/2017. “Applications of Deep Neural Networks for Ultra Low Power IoT.” In International Conference on Computer Design. Publisher's Version


IoT devices are increasing in prevalence and popularity, becoming an indispensable part of daily life. Despite the stringent energy and computational constraints of IoT systems, specialized hardware can enable energy-efficient sensor-data classification in an increasingly diverse range of IoT applications. This paper demonstrates seven different IoT applications using a fully-connected deep neural network (FC-NN) accelerator on 28nm CMOS. The applications include audio keyword spotting, face recognition, and human activity recognition. For each application, a FC-NN model was trained from a preprocessed dataset and mapped to the accelerator. Experimental results indicate the models retained their state-of-the-art accuracy on the accelerator across a broad range of frequencies and voltages. Real-time energy results for the applications were found to be on the order of 100nJ per inference or lower.
Last updated on 04/29/2022