A 25mm2 SoC for IoT Devices with 18ms Noise Robust Speech-to-Text Latency via Bayesian Speech Denoising and Attention-Based Sequence-to-Sequence DNN Speech Recognition in 16nm FinFET

Citation:

Thierry Tambe, En-Yu Yang, Glenn G. Ko, Yuji Chai, Coleman Hooper, Marco Donato, Paul N. Whatmough, Alexander M. Rush, David Brooks, and Gu-Yeon Wei. 2/13/2021. “A 25mm2 SoC for IoT Devices with 18ms Noise Robust Speech-to-Text Latency via Bayesian Speech Denoising and Attention-Based Sequence-to-Sequence DNN Speech Recognition in 16nm FinFET.” International Solid-State Circuits Conference (ISSCC'21). Publisher's Version

Abstract:

Automatic speech recognition (ASR) using deep learning is essential for user interfaces on IoT devices. However, previously published ASR chips [4-7] do not consider realistic operating conditions, which are typically noisy and may include more than one speaker. Furthermore, several of these works have implemented only small-vocabulary tasks, such as keyword-spotting (KWS), where context-blind deep neural network (DNN) algorithms are adequate. However, for large-vocabulary tasks (e.g., >100k words), the more complex bidirectional RNNs with an attention mechanism [1] provide context learning in long sequences, which improve ASR accuracy by up to 62% on the 200kwords LibriSpeech dataset, compared to a simpler unidirectional RNN (Fig. 9.8.1). Attention-based networks emphasize the most relevant parts of the source sequence during each decoding time step. In doing so, the encoder sequence is treated as a soft-addressable memory whose positions are weighted based on the state of the decoder RNN. Bidirectional RNNs learn past and future temporal information by concatenating forward and backward time steps.
See also: Speech and NLP