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Abstract—The growth in datacenter computing has increased
the importance of energy-efficiency in servers. Techniques to
reduce power have brought server designs close to achieving
energy-proportional computing. However, they stress the inherent
tradeoff between aggressive power management and quality
of service (QoS) — the dominant metric of performance in
datacenters.

In this paper, we characterize this tradeoff for 15 benchmarks
representing workloads from Google’s datacenters. We show that
9 of these benchmarks often toggle their cores between short
bursts of activity and sleep. In doing so, they stress sleep selection
algorithms and can cause tail latency degradation or missed
potential for power savings of up to 10% on important workloads
like web search. However, improving sleep selection alone is not
sufficient for large efficiency gains on current server hardware.
To guide the direction needed for such large gains, we profile
datacenter applications for susceptibility to dynamic voltage and
frequency scaling (DVFS). We find the largest potential in DVFS
which is cognizant of latency/power tradeoffs on a workload-per-
workload basis.

I. INTRODUCTION

The explosion of cloud services in the last decade has
led to computation moving away from the desktop into a
datacenter environment. Large Internet services are run in
a new type of datacenter, referred to as a warehouse-scale
computer (WSC) [3]. While the major focus in designing WSC
services is on predictable and scalable performance, the mere
scale of such datacenters also makes them prime candidates
for techniques that reduce server power — the aggregate energy
savings are beneficial from both a cost and an environmental
perspective. A typical WSC workload, such as web search,
or ad serving, is comprised of a tree of individual services,
each with their respective service-level agreement (SLA) for
performance. Applying power saving techniques on the servers
responsible for those services can adversely affect performance
and lead to invalidation of SLAs. Prior work on web search
from Microsoft [13] and Google [20] outlines this tradeoff
between power efficiency and request latency.

Power efficiency of datacenters, and WSCs in particular,
has been the target of a significant body of research [2],
[51, [10], [26]. It is well-established that datacenters spend
a large portion of time under-utilized. For example, Barroso
and Holzle show a typical CPU utilization of 5,000 Google
servers in the 10-50% range over 6 months [3]. This utilization
variance is caused by changing user demand and difficulties in
inter-datacenter load-balancing. Figure 1 also demonstrates the
varying user demand in a Google production cluster in North
America running content ad matching. Notice that for extended
periods of time incoming requests (measured in queries per
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Figure 1: Utilization of content ad matching in a production
cluster, measured in incoming queries per second (QPS),
normalized by the allocated cluster capacity.

second, QPS) spawn the very wide range of 15-105% of
allocated capacity.

Handling such large swings in utilization in an energy-
efficient manner is the main motivation behind energy-
proportionality [2]. In an ideal energy-proportional system,
server power consumption would perfectly track the arrival
patterns of requests shown in Figure 1. Achieving proportion-
ality requires that most power-hungry components be able to
scale down their power consumption with usage.

Today’s server systems are far from energy-
proportional [3], [20]. Figure 3 verifies this claim on
three contemporary server platforms running a websearch
leaf. If these platforms were proportional, their power
consumption would follow the dashed line which scales
linearly from zero to maximum power. This is not the case
for the platforms in question. At a utilization of 50% they
consume ~80% of the maximum system power, not 50%,
creating an energy proportionality gap [31]. Note that,
similar to observations by Wong and Annavaram [31], there is
no drastic difference between the three platforms in terms of
power scaling, except for the data point at 0% usage, where
Platform A (the oldest of the three) consumes significantly
more power.

Furthermore, the processor consumes the largest portion
of system power in recent WSC servers [3], [13]. While
DRAM power was considered as a challenger for this dom-
inant position, recent advances in memory power efficiency
(especially the broader adoption of the low-voltage DDR3L
standard) have changed this trend. Figure 4 demonstrates that
for a contemporary server platform: at full load the processors
consume 78% of the system power.! Furthermore, just the

"Power distribution data is measured at sense resistors before component
regulators on a 16-core, Intel SandyBridge platform with 256GB of DRAM.

Authorized licensed use limited to: Harvard Library. Downloaded on April 25,2022 at 15:05:09 UTC from IEEE Xplore. Restrictions apply.



— 100f ‘.4,—_*—‘!_":."./_. 777777777 ” Other 10%
3 =T ———5SD 5%
- _ B =A® —~
g 80 p - “——DRAM 8%
== _
‘S o FA” ener - Uncore 9%
5] L B .
- 60 Nt - proportienality gap
< 40 77 -
~ L.z = . — i
Other 38% - L > e -o Platform A Cores 69%
SSD 14% T pummmmm oo ~ )
DRAM 11% % 20L - = -8 Platform B ||
Uncore 16% ) o N + -4 Platform C
Cores 21%———NN . (o] o= S et 1
; ‘ ‘ ; ‘ ‘
0 20 40 60 80 100

QPS (% of capacity)

Figure 2: Idle server
power is evenly split be-
tween components.

dynamic range of processor power between fully idle and fully
loaded is 67% of the maximum system power (from Figures 2
and 4). This suggests that the processor has the largest potential
to bridge the energy proportionality gap in Figure 3, especially
at mid-range utilization. Therefore, in this paper, we focus on
processor power management.

We characterize two complementary mechanisms for power
management: idle and active. In the first one, idle power
states (C-states), decrease core power when no threads have
claimed a core and it is executing the operating system idle
loop. Processors expose different C-states to the OS that trade
sleep/wake-up latency for power savings by powering down
different parts of the core and its corresponding caches. In
a distributed system, the longer sleep/wake-up latencies of
aggressive sleep states can fall on the critical path of incoming
requests, and subsequently increase request latency. Thus, a
WSC has conflicting requirements between aggressive power
savings and aggravated request latency (and missing SLAS).
In this light, we address the following questions:

e  What are the sleep patterns of current WSC applica-
tion? Are applications’ idle periods short enough to
be affected by the choice of a particular sleep state?

e How much does C-state selection influence request
latency and system power on the macro level? In other
words, by how much can proper selection improve
latency, and what are the maximal power savings from
using idle periods?

We evaluate 15 benchmarks based on Google production
workloads. We show that for a fraction of them, sleep activity
is sufficiently coarse-grained that their latency response is not
affected by the choice of a particular sleep state. However,
fine-grained sleep activity does exist for certain applications.
For them, choosing inappropriate sleep states can result in a
latency or system power cost of up to 10%.

Aggressive idle power management, which is already in-
cluded in contemporary processors, is however not sufficient
to achieve an energy-proportional system. Thus, we turn our
focus on active power management, which slows down cores
while they are busy with execution. We evaluate the poten-
tial benefits of WSC applications from reducing voltage and
frequency during memory-bound phases of execution.

We first show that the same set of WSC benchmarks
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Figure 3: Energy proportionality (power as a function of
incoming load) across three successive x86 server platforms
has remained virtually unchanged.
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is highly memory-bound on average, suggesting that active
management through dynamic voltage and frequency scaling
(DVES) can be efficient. We identify a wish list of character-
istics that a practical DVFS solution in the datacenter should
abide by. We then show that it is unlikely to satisfy everything
on this wish list simultaneously by implementing a prototype
system. Finally, we identify that the directions holding the
largest promise are workload-specialized and ultra-fine-grained
DVES, which warrant further study.

II. IDLE MANAGEMENT AND LATENCY

We briefly describe the mechanisms for idle power manage-
ment, which is largely responsible for current systems’ power
savings at low load. While idle management saves significant
energy, we show that it can also cause latency degradation,
given workloads that are bursty enough.

The mechanism for processor idle power management
involves shutting down cores (or whole sockets) without work
to do. Figure 5 illustrates the process of entering a core idle
state (C-state): after there is no work to be scheduled in
userspace, the kernel executes a specific instruction (mwait
on x86), with a parameter indicating the requested C-state. In
Linux terminology, the logic to select the appropriate C-state
is called a governor.

The trade-off made by C-state governors is between power
savings and wake-up latency. Deeper C-states save more power
by power gating larger portions of the chip, but require a
longer wake-up time (and potentially more energy) to restore
state [19]. The minimum idle period for a specific C-state to
be profitable energy-wise is referred to as target residency. For
example, Intel’s SandyBridge microarchitecture exposes 5 core
C-states [29]:

state ‘ residency ‘ wake-up latency

CO0 (active) (active)
C1 1 us 1 us
C3 106 ps 80 us
(69 345 us 104 ps
C7 345 us 109 us

The kernel governor is not the only system in charge of
idle power management. Recent architectures include a shared
power control unit (PCU), whose purpose is to orchestrate
power management for the processor. The PCU can ignore
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Figure 5: The different layers of the hardware/software stack
involved in managing idle power states. Dashed lines indicate
state transitions only possible in hardware.

software requests for a specific C-state, choosing to enter a
shallower one, if it estimates that the residency requirement
of the deeper state will not be met. This behavior is called
C-state demotion and is controlled by a proprietary algorithm
set by processor vendors. Furthermore, the PCU can choose to
transition a core between different sleep states without waking
it up — a knob not available to software.

Thus, idle power can be independently managed both in
hardware and software. Both approaches have their bene-
fits. The PCU has a closer and more fine-grained view of
different cores’ power consumption, as well as finer-grained
control knobs. On the other hand, software has a global, non-
processor-centric view of the full system, and can predict
future events, such as incoming disk interrupts, and react
accordingly. Combining management on the two layers such
that they co-operate and do not get involved in “power strug-
gles” [25] requires a detailed understanding of both of them in
isolation. In this paper, we focus predominantly on the software
layer.

[Latency cost] Idle power states can save a significant
amount of system power [1], [16], [20]. They are largely
responsible for the power scaling of current platforms demon-
strated in Figure 3 (for example, the sharp “knee” of the
curve for Platform C near 12% QPS is the result of a whole
socket being able to go idle at the same time). However,
selecting the optimal sleep state requires accurate prediction
of sleep length. Predicting an idle period too short may cause
missed opportunities for power savings, if a deeper sleep state
is available. Similarly, predicting it too long may cause a
premature wake-up, adding the state wake-up latency to the
already time-critical interrupt processing.

We refer to the second effect as the latency cost of sleep.
Figure 6 illustrates how significant that cost can be. It shows
the median round-trip latency of a remote procedure call
(RPC) layer microbenchmark at different loads. > The resulting
workload is ideal for investigating the latency effects of idle

2Specifically, one server sends a small (several bytes) payload over the
network and waits for a response, measuring the round-trip latency. The re-
ceiver dedicates several cores to handling network interrupts and to forwarding
the payload to a single core on the same chip, which immediately sends the
payload back to the sender.
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Figure 6: Round-trip latency degradation for a RPC transport
layer for varying queries per second (QPS). Too aggressive
sleep states (at low QPS) significantly degrade request latency.

states — CPU utilization is low, so cores sleep often, and request
processing times are smaller than 100us, resulting in very fine-
grained sleep behavior.

Under low load (100 QPS), the cores on the critical path
of computation are idle for a significant fraction of time
and do enter deep sleep states. This results in an overall
2.4x increase in request latency compared to the high-load
(10,000 QPS) case. Such latency degradation is unintuitive —
in the canonical distributed system governed by queuing effects
increasing incoming request rates leads to higher latencies, not
lower.

We want to verify whether such sleep effects manifest
themselves on macro-scale benchmarks. In order for them to be
comparable to more typical queuing effects, request processing
latencies, or query interarrival rates, must be comparable to
deep C-state residencies — on the order of hundreds of us. In
other words, the workload must be “bursty”. In examining C-
states, LeSueur and Heiser [16] notice that an Apache web
server exhibits such bursts with lengths smaller than 1ms.
Furthermore, Meisner et al. [21] show that a web search
cluster can be modelled with an average query interarrival
rate of 300us. This motivates a more detailed characterization
of WSC benchmarks, with the aim to determine whether
they exhibit sub-millisecond sleep periods, and are therefore
susceptible to the latency cost of sleep.

III. EXAMINING SLEEP PATTERNS

In this section, we look into the idleness patterns of
current Google applications. This is a necessary first step
in determining whether datacenter workloads are potentially
vulnerable to the latency cost of deep sleep. Since our ultimate
goal is to better understand power vs. tail latency trade-offs, we
select a subset of our benchmarks, which satisfy the constraints
of: being latency-sensitive; and requesting idle states on a sub-
ms scale. We find that popular applications, like search, or
ad serving, fall into this category. For them, we measure the
maximum impact that C-state selection can have on tail latency
and system power — up to 10-15%.

A. Experimental setup

[Hardware configuration] We perform all our experiments
on a 2-socket, 16-core Intel SandyBridge-based server, which
has a total of 32 thread execution contexts. Its idle power states
are as described in Section II. We fix all cores’ frequency at
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Name Description

\ Relevant metric

latency-insensitive

saw String parsing in the Sawzall domain-specific language [24]. Test counts words | QPS
in production logs.
openssl Encryption test. Several standard encryption algorithms. QPS
flight-search Flight search and pricing engine. QPS
books Book scanning perspective correction. QPS
page-ranking Signaling search relevance by analyzing the hyperlink structure of web pages [22]. | QPS
mll Machine learning framework. QPS
ml2 Alternative machine learning framework for large dataset analysis. QPS
latency-sensitive, 10-centric
sstable Immutable, key-value, string-based storage for BigTable data [6]. latency
bigtable-single Scalable, distributed storage [6]. Local single-machine tests. QPS; latency
disk Low-level distributed storage driver. Test replays access traces from various | QPS; latency
production services.
bigtable Multi-machine BigTable test. More closely representative of real usage. QPS; latency
latency-sensitive, CPU-intensive
searchil Leaf node in a search cluster [20]. latency
search2 Alternative search leaf node. latency
ml3 Machine learning framework to group text in meaningful clusters. QPS; latency
ads Content ad targeting — matches ads with web pages based on page contents. latency

Table I: Benchmark names and descriptions.

2.6 GHz, disabling frequency up-scaling (referred to as Intel
TurboBoost). This is done because the additional frequency
headroom is heavily dependent on idle power management,
and controlled by an unknown algorithm in the processor’s
PCU. Enabling TurboBoost can bring significant additional
variance to our measurements.

We also disable C-state demotion for similar reasons. Some
prior work has shown that demotion can improve performance
on some workloads [29]. However, in our experiments, allow-
ing hardware to override software C-state decisions resulted
in significant run-to-run variance, large enough to hide any
correlation between changing software policies and overall
performance results.

[Software and workloads] We characterize the sleep
behavior of a variety of applications. To that end, we capture
timing information for every C-state transition as requested by
the kernel; as well as for the state’s corresponding wake-up
transition to the active state CO. This allows us to measure
the time each logical core spends at a certain C-state. We
also measure total system power at the power supply unit,
and average it over the whole benchmark execution.

The requested C-state transitions are captured using
ktrace [4] in the Linux kernel and collected with perf [7]
during the regions of interest for the different benchmarks,
after a necessary warm-up period. We capture every transition
(as opposed to sampling), because we require two consecutive
transitions to determine the residency in a given C-state. Since
transitions rarely occur more often than once every 10us,
and collection is appropriately buffered, the characterization
process does not incur a significant overhead.

We use a variety of workloads that represent stages of
large-scale Internet services. While not completely representa-
tive of any particular WSC, these applications cover different
classes of workloads from large datacenters. The application
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names and short descriptions are provided in Table I. We split
them into three groups based on their latency tolerance, and the
amount of IO operations that they perform. The last column
in the table lists the performance metrics used to define the
quality of service (QoS) for the particular service.

While in a real-world scenario these services are deployed
on a large number of machines, for practicality of our exper-
iments we constrain them to a single server, plus appropriate
load generation. The resulting load tests retain idiosyncrasies
of the live services they model (e.g. burtsy and changing
incoming traffic). Since single-server tests are prone to run-
to-run variance, we repeat all runs at least three times, often
more, based on applications’ individual characteristics.

B. The typical sleep duration varies

In order to characterize idle behavior of our benchmarks,
we measure the time each logical core spends at every available
C-state by recording state transitions in the kernel. We later
use this information to filter the benchmarks that are likely
to be affected by deep sleep. Since the main purpose of this
experiment is to capture the sleep patterns of applications, and
not of the hardware platform, we only distinguish between
“sleep” and “‘active” states.

Figure 7 shows the results of this characterization. The fig-
ures are in histogram format, with the x-axis bins representing
the amount of time between transitioning in and out of sleep,
and the y-axis showing the fraction of total execution time
spent in sleep or active mode. The sum of Active bars adds
up to the processor utilization of the particular service. In these
plots, bursty applications tend to spend a larger fraction of time
transitioning between states with shorter residency and show
up on the left side of those histograms, while those with very
long periods of activity/idleness cluster towards the right.

[Latency-insensitive applications] We first look into those
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Figure 7: Idle state distribution of WSC benchmarks. (a)-(g) Latency-insensitive benchmarks: the majority of sleep activity is
coarse-grained, with sleep/computation lengths, larger than 1ms. (h)-(k) Latency-sensitive, 10-centric benchmarks: a significant

amount of execution is spent requesting sleep for short periods of time (<Ims).
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Figure 7: Idle state distribution of WSC benchmarks. (1)-(o) Latency-sensitive, CPU-intensive benchmarks: the programs
completely occupy the processor (or a subset of cores) for long periods, leaving no room for fine-grained power management.
(p)-(r) Latency-sensitive, CPU-intensive (low QPS) benchmarks: when emulating low-activity periods, short sleeps begin to

emerge.

throughput-oriented benchmarks for which latency is not a
relevant metric. For all of them, latency is not important
because either they are implemented in a throughput-centric
model (such as MapReduce); or they are off the critical path
of major services (openssl); or the quanta of work over
which latency can be defined are too large from an architecture
standpoint (e.g. multi-second requests for flight-search).
Figures 7(a)-(g) show the sleep length distribution for such
applications. For most of them (except page-ranking and
ml2), idle power management activity is very coarse-grained,
with sleep and active periods well longer than 1ms. Since end
performance is not sensitive to individual request latency in
this case, the latency effects of deep sleep are irrelevant.

[Latency-sensitive 10-heavy applications] The second
group of benchmarks has relatively low CPU usage and
generates a large number of 1O requests. These benchmarks
are mostly different components of BigTable — the scalable
distributed storage system at Google [6]. Figures 7(h)-(k) show
the granularity of their sleep behavior. All benchmarks in
this group show a significant fraction of sleeps and bursts of
activity with sub-millisecond lengths. In the case that is closest
to real usage, the multiple-machine BigTable test (bigtable,
Figure 7k), short-length activity occurs for more than 80%
of the execution time. This confirms the preconception of 10
codes being bursty. It also implies that their latency might be
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significantly affected by C-state selection algorithms.

[Latency-sensitive CPU-heavy applications] Finally, Fig-
ures 7(1)-(o) show the group of CPU-bound benchmarks. They
either occupy every core in the system (searchl, search2,
ads), or completely utilize just a subset of cores (the rest).
Either case requires very minimal power management.

For the results so far, we assumed that services were fed
with the maximum QPS sustainable by a single machine. If
we restrict the rate of incoming requests, power management
becomes relevant for these applications, too. In fact, this is a
more realistic scenario since datacenter server CPU utilization
is typically far below 100%, as seen in Section I. Figures 7(p)-
(r) show the sleep length distribution for the active logical
cores of searchl, search2 and ads when incoming QPS
is respectively 15, 30 and 45% of the maximum sustainable
by a single server. These particular numbers are chosen to
represent CPU utilization in the 30-60% range. Notice that in
this case, a significant part of sleep and activity periods is short
in length (<1ms). For example, search1 has sub-millisecond
sleep activity for more than 70% of the execution time.

Based on these workload observations, we can select a
subset of benchmarks that are likely to be affected by sleep
policies, and continue the analysis with them. We choose the
major services that show bursty sleep behavior — bigtable
and the low-QPS variants of searchi, search2 and ads.
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Figure 8: Maximum improvement in average power and tail latency achievable by C-state selection (a). Achieving the maximum
improvement for both power and latency with a single policy is unlikely, as evidenced by the realistic menu governor (b).

C. Selecting the proper C-state matters

After identifying macro-level benchmarks that can be af-
fected by C-state management, we can quantify the maximum
effect that different governors could have on the benchmark
execution. The metrics that we look at are tail request la-
tency and average power. Tail latency here refers to 95-th
percentile latency for searchl and ads, and 99-th percentile
for bigtable and search2’.

In order to find the maximum improvement in both metrics,
we use two trivial C-state governors — deep and shallow. As
their names imply, deep always selects the deepest sleep state
(C7) whenever a thread is idle, saving a maximal amount of
power, but at the same time having the worst effect on latency
due to its long residency requirement; while shallow always
selects the least aggressive state (C1), saving little power, but
also increasing latency minimally due to its fast wake-up time.*

Thus, the room that a C-state governor has for power
savings is at most the difference between shallow power and
deep power. Similarly, the room for latency improvement is
given by the difference in deep and shallow latency. Because
of the trade-off between power savings, and wake-up latency,
a specific C-state selection algorithm would not realize these
maximum gains in request latency and power simultaneously.

Figure 8a shows the amount of potential gains for the
four applications. The bars labelled Latency measure la-
tency reduction of shallow over deep; ones labelled Power
measure power savings of deep over shallow. As expected,
the potential power reduction from using deeper C-states are
significant, averaging 8.6% across applications. Notice that this
is aggregate power consumed by the server, not only by its
processors. On the other hand, potential tail latency reduction
varies more with the choice of workload.

3For purely practical reasons — different benchmarks report different per-
centiles.

4We found that keeping the core active in CO by busy-spinning in the
kernel has worse latency effects than shallow. This was counter-intuitive,
but consistent. Therefore, we use shallow as the policy with the least power
savings.
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For both searchl and bigtable the relative improvement
in tail latency is significant, and close in value to the potential
for system power savings. This implies that realistic C-state
selection algorithms can trade off optimizing for any of the
two metrics. In the case of ads, the potential for improving tail
latency is substantially lower. This is consistent with Figure 7r,
which shows that ads has the smallest fraction of bursty sleeps
among the four applications examined here.

Interestingly, in the case of search?2, the average 99-th per-
centile latency increases when using shallow sleep, relative to
deep, although the run-to-run variance is so high that it is hard
to draw any major conclusions. search?2 is known to contain
many application-specific optimizations for tail latencies (e.g.
keeping busy-spin threads), and some of those customizations
might be the reason for degraded performance when sleep is
cheap (shallow). This effect illustrates the problem of trying
to simultaneously optimize a single metric in multiple layers
of the hardware/software stack.

Finally, Figure 8b shows that current prediction algorithms
can realize a large fraction of the ideal gains demonstrated
in Figure 8a. The solid bars show the real improvements in
power/latency of the menu governor [23] in the Linux kernel,
version 3.7, ° compared to the best-case gains in Figure 8b
(dashed lines).

While it is unlikely that the ideal gains in both latency
and power can be realized simultaneously, there is still room
for improvement in C-state selection. To show that, we tested
a simple extension to the menu algorithm, wrapping it in a
feedback loop that curbs too aggressive sleep (measured by
the frequency of pre-mature wakeups). That simple change
alone provides 5 percentage points (pp) decrease in bigtable
tail latency, while keeping power within £ 1pp of menu results
over all benchmarks.

While similar changes in C-state selection can help offset
worst-case performance degradation (like the one seen in Fig-

SIn short, the menu algorithm estimates the expected sleep time (by fitting
a simple regression model) and selects the appropriate C-state for that time
based on an estimated system latency tolerance.
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ure 6), even the ideal additional power gains in Figure 8a are
insufficient to bridge the energy proportionality gap identified
in the beginning of this paper. One obvious direction for that
is deeper C-states, which save more power, but do not take
longer to resume from. However, such improvements are by
no means WSC-specific, and hardware designers have likely
already optimized their designs for such win-win opportunities.
Thus, we turn our attention to another opportunity for power
savings — active management through frequency scaling.

IV. FREQUENCY SCALING

Exploiting periods of inactivity is not the only way to save
power. While an application is not sleeping — not given up a
core and with instructions in flight — there are still opportunities
for power reduction. These come from exploiting memory and
last-level cache (LLC) stalls. Dynamic voltage and frequency
scaling (DVFS) has been widely studied as a mechanism for
reducing power while a core is stalled. We will investigate the
potential of DVFS which exploits workload phase behavior,
ideally without performance overheads and without specific
workload adaptation.

While there have been many (mostly academic) proposals
to exploit stall periods with active power modes [11], [12],
[14], [26], [32], [34], they have not made their way to con-
ventional operating systems. For example, the Linux kernel’s
support for frequency scaling is based on a different premise.
Power-saving frequency governors (ondemand, powersave)
use OS-reported processor utilization as a proxy for the
system’s latency sensitivity, and scale frequency down when
processor utilization is low. While such a heuristic might be
useful for the desktop and mobile domains, WSC requirements
differ — services can be very sensitive to latency regardless of
how high processor utilization is (e.g. disk in Figure 7j).

Instead, our exploration focuses on memory-bound phases
of execution, during which slowing down cores does not affect
end performance. It is motivated by the fact that WSC appli-
cations appear highly memory-bound on aggregate. Figure 9
illustrates that — it measures average stall cycles, that is, cycles
when the cores in the system are not sleeping, but also not
committing instructions. The majority of WSC applications
have stall ratios comparable to those of the most memory-
bound SPECint applications (429.mcf and 471.omnetpp),
which have also shown largest benefits from DVFS [30].
Some open-source datacenter workloads also show comparable
average memory-boundness [9].

This high degree of memory-boundness suggests that WSC
applications may benefit significantly from DVFS. In the rest
of this section, we postulate a wishlist of requirements that a
practical datacenter-ready DVFS scheme would need. We then
follow up with a simple prototype implementation, showing
that large gains are not realistic without either workload-
specific tuning, or fine-grain hardware support.

A. Ideal requirements

An ideal active power management scheme for a WSC
environment would have the following characteristics:

[Workload-agnostic] It is well-known that different work-
loads have varying performance headrooms for power savings
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Figure 9: WSC benchmarks are more likely to keep cores

stalled than traditional SPECint applications.

through DVFS [30]. Some of the factors influencing this
headroom are easy to quantify with only global machine
knowledge (e.g. memory-boundness through hardware perfor-
mance counters). Others are more workload-specific. Consider
the search1 example in the bottom plot of Figure 10 (for now,
focus on any set of circles, which represent average request
latency). At low arrival rates, the average latency to handle
a request is far from the targeted SLA and aggressive power
management is desirable. However, when load is high latencies
get dangerously close to the SLA and performance should be
prioritized.

A DVEFS policy that exploits such workload-specific knowl-
edge can certainly lead to larger power savings than a generic
one. But, in the WSC case, it also requires detailed understand-
ing of (and a common software interface to) the performance
properties of a potentially large number of workloads. Such
complexity is significantly exacerbated in a shared cluster
— with many jobs, often co-scheduled together, and having
overprovisioned performance requirements [28]. A workload-
agnostic policy, on the other hand, only uses global machine-
and system-level information, without having to address such
complexities. We investigate whether such a policy can also
lead to power savings.

[Zero-tolerant] Once a large number of machines are
involved in a tiered, high-fanout WSC service tree, individual
machine performance variability is significantly amplified at
the overall service level. For example, Dean and Barroso
illustrate a case where the 99" -percentile latency increases by
more than 10x between one random leaf node in such a tree
and its parent node (which has to wait for all children to return
an answer)[8]. This conventional wisdom leads datacenter
operators to the conclusion that performance variability is
unacceptable if it affects latency metrics. Then, unless a DVFS
policy is able to monitor such latency metrics (which would
require workload specificity®), it has to be very conservative,
and only cause a minimal performance degradation, if any. We
call this property zero-tolerance.

[Thread-granular] An ideal DVFS policy for WSC appli-
cations is also able to adjust performance states on a per-thread
basis. This requirement is obviously beneficial in the shared

6.. and possibly significant complexity. One example is the work by
Raghavendra et al. [25], which uses a multi-layer coordinated control-theoretic

framework that bounds the distribution of request latency.
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Figure 10: DFS on searchl becomes effective only after
exploiting SLA slack (20% slack lines), not in the zero-
tolerance case (0% slack lines).

cluster case, where co-scheduling multiple tasks that do not
allocate all cores in a machine is the norm [28]. Dedicated
clusters would also benefit significantly from per-thread DVFS.
They typically run query-driven workloads, where different
threads execute different incoming queries, whose execution
phases do not necessarily overlap.

Note that implementing thread-granular DVFS on contem-
porary x86 server processors is challenging. This is mostly
due to the limited number of frequency and voltage domains,
which only allow scaling voltage and frequency for all cores
together [17]. This could change in the future when per-core
voltage regulation [15] amplifies the potential power savings.

[Fine-grained] Finally, different incoming queries are un-
correlated not only among threads, but also within a single
thread. This limits the duration of memory-bound phases
exploited by DVFS to the latency of a single query. However,
the majority of these queries are short — Meisner et al. [20]
show an example of more than 90% of queries in a search leaf
completing in Sms.

Previous phase-based DVFS approaches looked into much
coarser-grained intervals — e.g. 100M instructions [12] — which
would contain many independent (i.e. uncorrelated) requests in
a WSC application. Furthermore, in simulation, IPC variability
(and, hence, potential DVFS gains) of SPEC benchmarks has
been shown to decrease by more than 100x between intervals
of 300 and 10K instructions [27]. This high sensitivity to
granularity implies that an efficient WSC policy would benefit
significantly from fine-grained control.

B. Prototyping zero-tolerance DFS

We implemented a simple DVFS prototype to estimate the
importance of each of the above requirements. We use the
prototype to show that it is impossible to satisfy all of them
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simultaneously on contemporary server hardware, and some
need to be relaxed in order to realize significant power savings.

The mechanism we used for active power management is
clock duty cycle modulation [33]. It allows adjusting per-core
effective clock frequencies. Note that it does not adjust voltage
(current server processors only have a single core voltage
plane), so at best it can achieve power savings linear with
frequency. We adjust frequencies within the TurboBoost range
(2.6-3.3GHz at ~200MHz increments for the system described
in Section III-A).

The prototype implements a simple algorithm which em-
pirically estimates the sensitivity of performance to frequency,
similar to the one proposed by Hsu and Feng [11]. Sensitivity,
or CPU-boundness, is defined by a simple linear model of
normalized instructions per second (IPS) versus frequency:
Sensitivity = AI;];S X Aif, and used to predict performance
at different frequencies. This is done on a per-core basis, with
special attention to accounting for hyperthreads.’

The sensitivity model is used to predict the IPS decrease
from lowering a core’s frequency at every time step. If the pre-
dicted performance degradation is lower than a target “slack”
parameter, the core asks for a lower frequency. A slack value
of 0% represents the zero-tolerance policy from the previous
section which only exploits highly memory-bound phases dur-
ing which performance is insensitive to core frequency. Both
more complex phase detection mechanisms [12] and frequency
selection policies [32] are certainly possible (and have been
summarized previously [14]), but are not the purpose of this
paper. Our prototype implementation is the minimum realistic
case that matches the four requirements in Section IV-A.

Figure 10 shows the results of applying this implementation
to searchl at different incoming QPS rates. The top plot
displays power consumption at different values of the slack
parameter, while the bottom one illustrates the effects of
power savings on average and 95"-percentile latency. Most
importantly, zero-tolerance DVFS does not find periods of
complete memory-boundness at the 1ms granularity, and does
not save power. This is evident from the virtually identical
lines labelled “baseline” and “0% slack”.

[Workload-controlled DVFS] Relaxing the zero-tolerance
constraint has the expected effect (9% full-system power sav-
ings on average at 20% IPS slack), but at a significant increase
in tail latency (the line labelled “95-th %”). Relaxing even
further, a hypothetical system that includes per-core voltage
control can achieve 20% full-system power savings (assuming
P  f?4 [20]). For some loads, when latency is significantly
below the SLA (for example, QPS <80% on Figure 10), the
increase in latency is completely tolerable — that is, there
are no gains from aggressively beating the SLA. Recently,
Lo et al. proposed a system that exploits this property for a
websearch benchmark, adjusting DVFS aggressiveness based
on the difference between observed latency and the latency
agreement [18]. As discussed earlier, while such per-workload
systems achieve impressive power savings for ubiquitous ap-
plications, deploying them across a wide range of different
workloads could be challenging.

7Furthermore, if there is not enough frequency variability as a result of the
control algorithm, the prototype occasionally perturbs cores to the minimum
and maximum frequencies, so the sensitivity model does not get stale.
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[Phase granularity] Another factor that could be limiting
the power savings of the tested prototype is the granularity of
program phases. For our software implementation, the minimal
DVFS period that causes non-negligible performance loss is
Ims. We also ran experiments with 100us intervals, and, de-
spite the performance penalty of triggering decisions too often,
power results were virtually identical to the ones in Figure 10.
This implies that memory-bound phases in applications like
searchi either do not exist, or manifest themselves on a finer
granularity than ~100K instructions. The latter case is more
likely — searchl is highly stalled on average (Figure 9), and
simulation studies [15], [27] (albeit on different workloads)
have shown that shorter phases have orders of magnitude
higher variability in CPU-boundness. Confirming the existence
of such ultra-fine-grained phases in WSC applications would
require at least a separate simulation study; exploiting them —
hardware support which does not have to pay the overheads
of switching to the kernel so often.

The analysis in this section suggests that, while initially
appealing, a DVFS solution that is at the same time workload-
independent, zero-performance-overhead, fine-grained and per-
thread does not work on current server hardware. For signifi-
cant power gains, one needs to either exploit workload char-
acteristics or additional hardware which can track extremely
short-lived memory-bound phases.

V. CONCLUSION

With the increasing popularity of online services, intelli-
gently managing power for warehouse-scale machines is be-
coming ever more relevant. We have characterized datacenter
workloads, focusing on opportunities to save power at all
ranges of processor utilization. We have shown that such
workloads are neither completely CPU- nor I0-bound. Instead,
they mix bursts of computation with short periods of sleep,
emphasizing the need for comprehensive sleep state selection
algorithms. We have shown that power savings are possible
while not sleeping, too, but only after careful and workload-
specific frequency scaling policy.
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