
MEMTI: Optimizing
On-Chip Nonvolatile
Storage for Visual Multitask
Inference at the Edge

Marco Donato, Lillian Pentecost,

David Brooks, and Gu-Yeon Wei

Harvard University

Abstract—The combination of specialized hardware and embedded nonvolatile memories

(eNVM) holds promise for energy-efficient deep neural network (DNN) inference at the

edge. However, integrating DNN hardware accelerators with eNVMs still presents several

challenges. Multilevel programming is desirable for achieving maximal storage density on

chip, but the stochastic nature of eNVMwritesmakes them prone to errors and further

increases the write energy and latency. In this article, we present MEMTI, a memory

architecture that leverages amultitask learning technique for maximal reuse of DNN

parameters acrossmultiple visual tasks. We show that by retraining and updating only

10% of all DNN parameters, we can achieve efficient model adaptation across a variety of

visual inference tasks. The system performance is evaluated by integrating thememory

with the open-source NVIDIA deep learning architecture.

& IN RECENT YEARS, deep neural networks

(DNNs) have become essential to tasks across

application domains, including image recognition

and detection, language processing, and tran-

slation. This increase in popularity, together

with the continued proliferation of low-power

embedded devices, has motivated the design of

DNN-specific hardware accelerators.1 While many

energy-efficient DNN hardware implementations

have been proposed, a major challenge remains:

the large memory requirement to store DNN
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parameters. Although entirely on-chip storage

would guarantee better inference performance,

limited on-chip SRAM capacity inevitably leads to

reliance on costly off-chip memory accesses to

DRAM.

Embedded nonvolatile memories (eNVMs)

provide higher density than SRAM and can ame-

liorate the need for power-hungry DRAM stor-

age. However, the benefits of eNVMs come at the

cost of larger write energy and write latency.

Moreover, limited eNVM write endurance is

an obstacle to the adoption of certain technolo-

gies if DNN parameter values require frequent

updates. For instance, embedded devices for

robotics or augmented reality applications

often required a combination of multiple infer-

ence tasks, including image classification, object

detection, and action recognition. These cases

highlight the need for scalable solutions that

can flexibly accommodate DNN parameters for

multiple tasks.

We present a DNN model and memory code-

sign solution that leverages a multitask learn-

ing technique to reduce eNVM writes, while

enabling systems to efficiently perform multi-

ple inference tasks. Maximizing the reuse of the

learned parameters across different DNN-

dependent vision tasks without retraining

enforces the assumption of infrequent writes:

parameters shared by multiple tasks are

trained and written only once, and therefore

are highly suitable for eNVM storage; in con-

trast, the remaining parameters can be

retrained to accommodate new inference tasks,

and stored in SRAM. In addition to the storage

density benefits, we evaluate how the process

of retraining specific parameters can be used

to recover from accuracy loss due to the adop-

tion of denser, fault-prone multilevel eNVM

storage. This article provides the following

contributions.

� Leverage residual adapters to optimize

parameter storage in dense eNVMs.

� Evaluate application accuracy with quantiza-

tion and multilevel cell (MLC) RRAM faults

when a majority of DNN parameters is shared

across inference tasks.

� Quantify the system-level performance and

energy advantages of a multitask-enabled

deep learning architecture (NVDLA) inte-

grated with optimized eNVM solutions.

DNN AND MEMORY CODESIGN
Generalizing deep learning architectures to

enable different application domains and more

varied inference tasks serves as a way of sup-

porting more powerful and versatile models. For

example, the work by Kaiser et al.2 combines

several building blocks for translation, speech,

and visual inference that can be trained on all

desired tasks simultaneously or on each task

separately. In either case, however, introducing

new inference tasks would require updating the

entire set of model parameters. Other works

have leveraged the concept of transfer learning

to improve the performance of a single DNN on

different data sets. These approaches are based

on the observation that many visual inference

tasks share low-level features, such as edge and

shape detection, in the front-end layers, and

become more task-specific as the computation

moves closer to the classification layers.

However, in order to preserve inference accu-

racy, transfer learning approaches either share

only a limited number of front-end layers or fine-

tune parameters by retraining the transferred

features from one inference task to another.3 A

recent proposal applies transfer learning to

create a synthesizable fixed-parameter feature

extractor.4 However, hardwiring the feature

extractor in logic prevents from fine-tuning the

parameters, limiting the amount of cross-task

weight sharing.

While all these techniques enable a single

DNN model to perform different inference tasks,

they still require updating a considerable por-

tion of parameters to achieve maximum adapt-

ation. We pursue a specific transfer learning

technique for which the learned parameters can

be generalized across multiple vision inference

tasks by maximizing DNN parameter reuse and

enabling efficient inference on embedded devi-

ces. The high degree of DNN parameters reuse

reduces memory traffic requirements, which

makes nonvolatile memories a compelling solu-

tion for retaining shared parameters on-chip

without incurring costs associated with frequent

memory writes.
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Multitask Learning Model

Our design is based on the DNN architecture

presented by Rebuffi et al.,5 which uses residual

adapter modules as a way to parameterize a

generic ResNet network. These parametric mod-

ules are themselves residual blocks which use

1�1 filters and skip connection. In this setting,

the number of domain-specific parameters,

which comprises adapter filters, batch normali-

zation, and fully connected classifier parame-

ters, can be reduced to roughly 10% of the total

model size. For our experiments, we integrate

the residual adapter modules in a ResNet26

network.

The baseline network is pretrained on

ImageNet, which is standard practice in transfer

learning and model fine-tuning techniques. The

pretrained version for ImageNet achieves top-1

accuracy of 67.65%. The ResNet26 weight para-

meters obtained during pretraining are the

backbone of this multitask inference system as

they are reused for running inference on any

additional visual task. The degree of adaptation

is tested against five data sets, which have

been selected to be representative of popular

image processing tasks including classification

(cifar100, aircraft), object detection (German

Traffic Signs, Daimler pedestrian classification),

and action recognition (UCF101 Dynamic

Images).

Table 1 summarizes the best accuracy in the

case of the model being either trained entirely

from scratch or only for the task-specific param-

eters. As anticipated, for all data sets, the adapt-

ers overhead is around 10%. The accuracy of the

network trained using adapters is always better

than or comparable to training the entire net-

work independently for each data set. In addi-

tion, we observe that the modified model

converges to the best accuracy in fewer training

epochs, which results in training speedup

reported in Table 1.

Nonvolatile Memory Technologies

The landscape of nonvolatile memories

includes a wide range of emerging technologies.6

These memories are generally characterized by

high energy efficiency and high storage density,

which can be further increased by programming

multiple levels in a single cell. We label this

storage solution as MLC storage, in contrast to

single-level cell (SLC) storage, for which each

eNVM cell stores a single binary value. In this

article, we focus on a specific eNVM implementa-

tion, namely RRAM. Various implementations

such as phase-change memories, embedded

flash, or ferroelectric memories can also be used

for MLC storage. On the other hand, STT mag-

netic memories (STT-MRAM), while having the

best write and read performance,6 are not a suit-

able candidate because compelling MLC imple-

mentations with comparable density have not

been demonstrated to date.

There are alternative implementations

with varying advantages and limitations. For

example, the storage requirements for the

DNN architecture we are leveraging could be

met by read-only memories (ROMs) as well.

ROMs ensure the best density for storing the

shared parameters, however, they also require

configuring the network at fabrication time,

which makes the design less scalable and

cost-effective. One-time programmable memo-

ries such as antifuse, while being amenable

to postfabrication configuration, are far less

dense than other memory solutions, even

when compared to SRAM.7 Previous work has

investigated how threshold voltage shifts

induced by hot-carrier injection in standard

high-k transistors could be used as nonvolatile

memories.8 Moreover, recent work has shown

how eNVMs implemented with this approach

can be used for on-chip MLC weight storage

for DNN accelerators.9 The same behavior has

been demonstrated on a variety of technolo-

gies, including bulk, silicon-on-insulator, and

FinFET devices. A major limitation for these

eNVMs is the long write latency, which falls in

the range of milliseconds.

Memory System for Energy-Efficient Multitask

Inference (MEMTI)

In order to complement the properties of

residual adapter networks and dense MLC

RRAM storage, we propose MEMTI. A large frac-

tion of the parameters in a residual adapter net-

work is shared across multiple applications,

and can be efficiently stored in MLC RRAM,

while application-specific parameters can be

stored in SRAM. By partitioning on-chip
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memory area between RRAM and SRAM, we

achieve the best tradeoff between storage den-

sity for the shared parameters and fast and

energy-efficient updates for the task-specific

parameters (SRAM). Off-chip DRAM stores

multiple sets of task-specific parameters. The

resulting memory hierarchy takes advantage of

RRAM nonvolatility for intermittent operation

by powering down the system between infer-

ences. In this scenario, only a small portion of

the model parameters must be written to SRAM

during power up or task switching. Moreover,

storing task-specific parameters in more robust

memory allows us to mask MLC RRAM faults via

retraining, as shown in the “Model Compression

and Training Techniques” section.

EVALUATION FRAMEWORK
To evaluate the proposed memory archi-

tecture, we quantify the impact of RRAM fault

characteristics and MLC encoding on inference

accuracy, memory architecture and array prop-

erties, and system-level performance. The fault

model is derived from previous work integrating

eNVM device and circuit-level fault characteris-

tics with DNNs evaluation frameworks to allow

for extensive memory and DNN codesign space

exploration.9 We model MLC RRAM faults based

on stochastic level distribution which arise from

the random nature of memristors programming.

When multiple levels are programmed in a single

RRAM cell, the distributions overlap can be used

to extrapolate the read fault probabilities for

each level.

The resulting error map is then integrated in

a DNN evaluation framework to simulate the

impact MLC RRAM faults on inference accu-

racy. The level distributions are extrapolated

from measured MLC RRAM characteristics.10

We use a version of the residual adapter archi-

tecture implemented in PyTorch to evaluate

the DNN accuracy under different storage

schemes. The existing implementation is modi-

fied by adding transform functions that manip-

ulate the weight parameters value according to

different multilevel encoding and compression

techniques.

Based on the MLC RRAM fault probabilities,

we sample the value of the stored weight matrix

based on a predefined multilevel encoding con-

figuration to evaluate the impact on the model

accuracy. In addition, we improve the fault

model by including the effects of the sensing

circuitry on the read error probability.

The corresponding framework is used to

drive the design toward a solution that would

minimize the on-chip memory footprint without

increasing the inference error. After identifying

the best MLC encoding without loss in accuracy,

we perform a memory design space exploration

using a modified version of NVSim.11 Once again,

we consider the contribution of sense amplifiers

to area, energy, and performance of the memory

array. Reading back the stored value requires

converting the programmed analog level to a

binary word, and can be done using parallel

sensing or sequential sensing schemes. Parallel

sensing is similar to using a flash ADC, and

requires each bitline to have dedicated sense

amplifiers for each possible stored level. Sequen-

tial sensing uses a single sense amplifier and

recovers the stored binary word iteratively for

each bit. While sequential sensing reduces the

Table 1. Summary of data set characteristics, and maximum training accuracy for the model trained entirely from scratch on each

data set or using residual adapters on a pretrained network.

Data Set

cifar100 aircraft daimlerpedcls gtsrb ucf101

# images 50K 7K 30K 40K 9K

# classes 100 100 2 43 101

Full model 72.78% 40.98% 99.88% 99.97% 73.77%

Only adapters 79.61% 43.8% 99.51% 99.94% 73.16%

Parameters overhead 10.4% 10.4% 10.1% 10.2% 10.4%

Training speed-up 4� 2� 1:35� 3:23� 4:74�

Pretrained shared parameters on ImageNet with 67.65% accuracy.
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overall number of sense amplifiers, we noticed

that implementing parallel sensing with small

sense amplifiers does not incur an excessive

area penalty. The impact of off-chip memory

accesses is quantified using a model of

LPDDR4 DRAM. Power and performance esti-

mates are derived assuming a power consu-

mption of 200 mW at a 1 GHz operating

frequency. Finally, we integrate the resulting

memory hierarchy with a proven CNN acceler-

ator architecture developed by NVIDIA

(NVDLA), which, combined with NVSim results

and DRAM estimates, allows us to evaluate the

system energy and performance for different

application scenarios.

MODEL COMPRESSION AND
TRAINING TECHNIQUES

In this section, we explore the tradeoffs

between different storage techniques and model

accuracy. In particular, we look at the combined

effect of circuit-level optimization (RRAM MLC

encoding) and reducing DNN model size (quanti-

zation and pruning). Quantizing the whole model

using a fixed point encoding with 2 b for sign and

integer and 6 b for the fractional part achieves

80.3% accuracy on cifar100. We highlight some

key insights by considering three examples.

For all three cases, we take advantage of the

residual adapter ability to compensate for accu-

racy loss associated with the faults in MLC

RRAM and due to reduced DNN weight precision.

We demonstrate that by fine-tuning only the

task-specific parameters, the DNN learns vari-

ability-induced errors affecting the parameters

stored in RRAM, and this helps maintain

inference accuracy closer to the baseline

value. Other approaches could be used to mit-

igate the impact of MLC faults on accuracy.

For instance, error correction codes (ECCs)

are an established solution for improving the

reliability of fault-prone MLC eNVMs and can

be implemented with reasonable overhead in

terms of additional circuitry. ECC-based solu-

tions offer considerable benefits when applied

to eNVM storage.12 It is worth noting that ECC

protection could be used to mask errors in

the shared parameters, thereby removing the

need for retraining. However, ECC alone does

not solve the issues related to eNVM write

endurance. For this reason, it represents a

possible extension to working with residual

adapters for multitask scenarios, rather than a

concrete alternative.

Our first example shows the implications of

storing both shared and task-specific parame-

ters on 3 b/cell MLC RRAM. For 8-b weights, we

can reduce the effective fault rate for the sign

and integer values by spacing the levels as

described by the nonuniform encoding tech-

nique presented by Donato et al.9 In addition,

we also prune the shared parameters, which

has also been shown to help mask MLC errors

in nonvolatile memories.9 We observe that

storing all weights for cifar100 in MLC RRAM

results in an average accuracy over 100 trials of

28.34%, and retraining the residual parameters

raises the accuracy to just 56.98%. These

results highlight the importance of protecting

the value of the task-specific parameters from

errors.

MEMTI proposes a hybrid memory architec-

ture in which shared and task-specific parame-

ters are split between RRAM and SRAM. Starting

from the same quantization and MLC configura-

tion as in the previous example, we show an

average accuracy of 79.72% after retraining the

residual parameters if residual parameters are

stored securely in SRAM. In fact, this retraining

strategy can completely mask the impact of

storing weights in MLC RRAM; even for the

worst case accuracy degradation when storing

shared parameters in RRAM (36.91%), retrain-

ing and securely storing the residual adapter

parameters results in an accuracy of 79.24%,

consistent with baseline accuracy. Motivated

by this result, we propose leveraging this tech-

nique to achieve even more aggressively dense

storage by reducing the number of bits for the

shared weights to 6. This configuration uses

just 2 RRAM cells per weight. In this case, train-

ing the residual adapters results in an average

accuracy of 79.05%. The worst-case accuracy

before training the adapters is 2.04%, and can

be recovered up to 77.57% after training.

Figure 1 shows the same trend in terms of the

nominal baseline accuracy, accuracy before

retraining, and accuracy after retraining of the

task-specific parameters for the data sets con-

sidered in this work.
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SYSTEM-LEVEL CHARACTERIZATION
As shown in Figure 2, the baseline NVDLA

system comprises a convolutional core with

1024 MAC units fed by a convolutional buffer

and supplemented by several additional

computational units for pooling and data trans-

formation operations. NVDLA also supports a

memory interface block and DMA that fetches

model weights per layer from off-chip DRAM

and leverages on-chip SRAM (2 MB) to buffer

inputs and intermediate results of computation

between layers in the DNN. We flexibly inte-

grate MEMTI with the NVDLA performance

model as an additional memory interface to

leverage for model weights, either in addition

to or in place of fetching parameters from

off-chip DRAM.

For a competitive multitask inference appli-

cation, we evaluate the performance, energy,

and area for the NVDLA system when execut-

ing three inferences per input frame using

three representative visual tasks, namely

image classification (cifar100), object detec-

tion (gtsrb), and action recognition (UCF101).

This series of tasks computed per input frame

would be appropriate, for example, for an

autonomous vehicle or a drone processing

sensory data to understand and interact with

the surrounding environment. For this applica-

tion, we set the target operating frequency to

30 frames per second (FPS), or 90 inference

tasks per second, which satisfies a breadth of

applications. Both NVSim and NVDLA results

are extrapolated for a system manufactured

using a 22-nm technology node.

DRAM-based design: As a baseline case, we

assume that the accelerator is continuously

processing input frames and fetching both

shared and task-specific parameters from off-

chip DRAM for each layer’s computation. This

DRAM-only, always-on operation consumes a

total power of 493 mW and a peak performance

of 749 FPS. The estimated power includes data-

path, DRAM refresh, and on-chip SRAM leakage.

At this stage, the on-chip SRAM is exclusively

used for storing the input features and interme-

diate values. We compute the energy per frame

at peak performance to be 1.17 mJ.

Provisioning for on-chip SRAM: We first show

the case in which we allocate enough on-chip

SRAM to store the entire set of parameters for a

single task. For a system designed to run a single

inference task, having the option of storing all

the network parameters on chip allows to

reduce the memory access energy by 40�. This

result demonstrates the strong impact of off-

chip memory access on the entire system

energy. These high energy savings are however

impractical to realize with SRAM since for a

22-nm technology node, we estimate a total area

of 6.55 mm2. Moreover, when we consider the

full system energy in the multitask scenario

described above, the periodic parameter

updates and SRAM leakage power reduce the

energy savings to 0:64�.

Figure 2. NVDLA system diagram, with additional optional

interface to MLC RRAM for on-chip weight storage.

Figure 1. Accuracy for different data sets when the weights are

stored usingMEMTI. The results before and after task-specific

parameters retraining are compared to the baselinemodel

accuracy for the compressed, error-free model. Each bar shows

themean accuracy and standard deviation over 100 random trials.
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Improving storage density with eNVM: As a

first step toward reducing both power consump-

tion and memory footprint, we consider storing

the weights on chip using MLC RRAM. Without

applying any DNN-level optimization, a multitask

operation would still require updating all the

model parameters stored in RRAM when switch-

ing to different inference tasks. While this type

of operation has a clear downside dictated by

the RRAM write endurance, our system level

evaluation exposes other limitations. Although

the overall leakage power and on-chip memory

area can be reduced to 298 mW and 0.347 mm2,

respectively, the energy per inference increases

to 14.58 mJ. This is caused by the combined

effect of RRAM write energy and latency. These

examples highlight the need for a solution capa-

ble of balancing on-chip memory density and

write performance.

MEMTI for intermittent operation: MEMTI

removes the memory write costs by replacing

the RRAM portion storing the task-specific

parameters with SRAM. This is possible thanks

to the adoption of residual adapters in the DNN

network. For the resulting design, the total sys-

tem power is 362 mW and the energy per infer-

ence is 1.56 mJ, which is comparable with the

baseline result. Isolating the costs associated

with weight storage emphasizes the benefits

introduced by MEMTI: power consumption

is reduced by 3:9�, with an area overhead

of 1.16 mm2. The resulting peak performance

is 429 FPS, well above the application require-

ments. Intermittent operation is where

MEMTI truly stands out by taking advantage of

the nonvolatility of RRAM. In this scenario, we

fix the operation at 30 FPS and power down

the system between frames, which reduces the

energy per inference by 10:65�.

RRAM-based specialized design: Alterna-

tively, we consider the case specifically tailored

for the three chosen tasks. Using residual adapt-

ers still reduces the weights storage requirements

by a factor of 2:3�. In addition, we store the whole

set of task-specific parameters for the three tasks

in SLC RRAM. Relaxing the density requirement

for task-specific parameters allows to preserve

inference accuracy while removing the need for

additional SRAM. This design choice reduces the

overall power to 343 mW, and the area to 1 mm2.

Allocating enough memory for storing all the

parameters on chip increases the energy sav-

ings compared to the baseline by 13:6�, making

this design the most area and energy efficient.

Nonetheless, MEMTI maintains the advantage in

terms of flexibility and robustness to RRAM

errors thanks to ease of reprogrammability for

the task-specific parameters, for which the

memory capacity is determined only by the net-

work structure and therefore is independent

from the breadth of tasks considered in a

specific application.

Figure 3 shows the relationship between FPS

and energy per inference normalized to the DRAM

case. The all SRAM and all RRAM configurations

are heavily penalized by the inability of efficiently

implement a multitask inference system. On the

other hand, a codesign of the memory and DNN

model using residual adapters shows much

higher energy savings compared to the baseline.

Table 2 summarizes the results at 30 FPS for the

different configuration cases.

CONCLUSION
With the increasing adoption of DNN hard-

ware accelerators for edge devices, there is a

growing need for scalable design approaches

that provide flexible and cost-effective imple-

mentations. In evaluating the performance of dif-

ferent memory solutions integrated with a DNN

hardware accelerator, we show that technologi-

cal improvements alone do not always lead to

Figure 3. Energy versus FPS for the different design

configurations normalized to the DRAM baseline. The power

savings of the RRAM-based design for higher frame rates is

exacerbated by the frequent RRAM writes, making the design less

efficient than the DRAM-based baseline. On the other hand, the

energy per inference for MEMTI and RRAM adapters is strictly

better than the baseline.
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the most optimized design, especially in the con-

text of multitask inference. A codesign approach

that leverages the properties of emerging mem-

ory technologies and DNN models allows to

achieve both energy efficiency and flexibility.

With this in mind, we present MEMTI as a meth-

odology for enabling energy-efficient multitask

inference on edge devices, while reducing the

cost of nonvolatile memory writes. In addition,

training the task-specific parameters based on

the memory characteristics allows recovery of

accuracy lost due to fault-prone eNVM storage.

ACKNOWLEDGMENT
This work was supported by the Applications

Driving Architectures (ADA) Research Center,

a JUMP Center cosponsored by SRC and DARPA.

& REFERENCES

1. B. Reagen, R. Adolf, P. Whatmough, G.-Y. Wei, and

D. Brooks, Deep Learning for Computer Architects

(Synthesis Lectures on Computer Architecture),

vol. 12, no. 4, pp. 1–123, Aug. 2017. [Online].

Available: http://www.morganclaypool.com/doi/

10.2200/S00783ED1V01Y201706CAC041

2. L. Kaiser et al., “One model to learn them all,” 2017.

[Online]. Available: http://arxiv.org/abs/1706.05137

3. J. Yosinski et al., “How transferable are features in

deep neural networks?” in Proc. 27th Int. Conf. Neural

Inf. Proc. Syst., 2014, vol. 2, pp. 3320–3328. [Online].

Available: http://dl.acm.org/citation.cfm?

id=2969033.2969197

4. P. N. Whatmough, C. Zhou, P. Hansen, S. K.

Venkataramanaiah, J. Sun Seo, and M. Mattina,

“FixyNN: Efficient hardware for mobile computer vision

via transfer learning,” in Proc. SysML Conf., 2019.

5. S.-A. Rebuffi, H. Bilen, and A. Vedaldi, “Efficient

parametrization of multi-domain deep neural

networks,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., June 2018.

6. D. C. Daly, L. C. Fujino, and K. C. Smith, “Through

the looking glass—The 2018 edition: Trends in

solid-state circuits from the 65th ISSCC,” IEEE

Solid-State Circuits Mag., vol. 10, no. 1, pp. 30–46,

Jan. 2018.

7. S. H. Kulkarni et al., “A 32nm high-k and metal-gate

anti-fuse array featuring a 1.01m21t1c bit cell,” in

Proc. Symp. VLSI Technol., Jun. 2012, pp. 79–80.

8. F. Khan, E. Cartier, C. Kothandaraman, J. C. Scott,

J. C. S. Woo, and S. S. Iyer, “The impact of self-

heating on charge trapping in high-k-metal-gate

nFETs,” IEEE Electron Device Lett., vol. 37, no. 1,

pp. 88–91, Jan. 2016.

9. M. Donato et al., “On-chip deep neural network

storage with multi-level eNVM,” in Proc. 55th Annu.

Design Autom. Conf., 2018, pp. 169:1–169:6. [Online].

Available: http://doi.acm.org/10.1145/

3195970.3196083

10. L. Zhao et al., “Improved multi-level control of RRAM

using pulse-train programming,” in Proc. Techn.

Program—Int. Symp. VLSI Technol., Syst. Appl., Apr.

2014, pp. 1–2.

11. X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A

circuit-level performance, energy, and area model for

emerging nonvolatile memory,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 31, no. 7, pp.

994–1007, Jul. 2012.

12. L. Pentecost, M. Donato, B. Reagen, U. Gupta, S. Ma,

G.-Y. Wei, and D. Brooks, “MaxNVM: Maximizing DNN

storage density and inference efficiency with sparse

encoding and error mitigation,” in Proc. 52nd Annu.

IEEE/ACM Int. Symp. Microarchit., 2019,

pp. 769–781. [Online]. Available: https://doi.org/

10.1145/3352460.3358258

Table 2. Summary of power, performance, and area for the four design configurations considered in this article.

Power Max FPS WMem Area Saved On-chip On-chip

[mW] [mm2] energy SRAM RRAM

all DRAM 493 749 – 1� 2MB –

all SRAM 634 485 6.55 0.64� 8.5MB –

all RRAM 298 47 0.347 1.62� 2MB 2.2MB

MEMTI 344 429 1.16 10.65� 2.7MB 2MB

RRAM adapters 301 396 1 13.6� 2MB 4MB

The energy savings are normalized to the all DRAM configuration for the intermittent multitask operation over three tasks running at

30 FPS. On-chip RRAM shows the physical memory capacity (i.e., number of cells).
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