DeepRecSys: A System for Optimizing End-To-End
At-Scale Neural Recommendation Inference

Udit Gupta'?, Samuel Hsia', Vikram Saraph?, Xiaodong Wang?, Brandon Reagen?,
Gu-Yeon Wei', Hsien-Hsin S. Lee?, David Brooks'?, Carole-Jean Wu?

"Harvard University

ugupta@g.harvard.edu

Abstract—Neural personalized recommendation is the cor-
nerstone of a wide collection of cloud services and products,
constituting significant compute demand of cloud infrastructure.
Thus, improving the execution efficiency of recommendation
directly translates into infrastructure capacity saving. In this
paper, we propose DeepRecSched, a recommendation inference
scheduler that maximizes latency-bounded throughput by taking
into account characteristics of inference query size and arrival
patterns, model architectures, and underlying hardware systems.
By carefully optimizing task versus data-level parallelism, Deep-
RecSched improves system throughput on server class CPUs
by 2x across eight industry-representative models. Next, we
deploy and evaluate this optimization in an at-scale produc-
tion datacenter which reduces end-to-end tail latency across
a wide variety of recommendation models by 30%. Finally,
DeepRecSched demonstrates the role and impact of specialized
AI hardware in optimizing system level performance (QPS) and
power efficiency (QPS/watt) of recommendation inference.

In order to enable the design space exploration of customized
recommendation systems shown in this paper, we design and
validate an end-to-end modeling infrastructure, DeepRecInfra.
DeepRecInfra enables studies over a variety of recommendation
use cases, taking into account at-scale effects, such as query
arrival patterns and recommendation query sizes, observed
from a production datacenter, as well as industry-representative
models and tail latency targets.

I. INTRODUCTION

Recommendation algorithms are used pervasively to im-
prove and personalize user experience across a variety of web-
services. Search engines use recommendation algorithms to
order results, social networks to suggest posts, e-commerce
websites to suggest purchases, and video streaming services
to recommend movies. As their sophistication increases with
more and better quality data, recommendation algorithms have
evolved from simple rule-based or nearest neighbor-based
designs [1] to deep learning approaches [2]-[7].

Deep learning-based personalized recommendation algo-
rithms enable a plethora of use cases [8]. For example, Face-
book’s recommendation use cases require more than 10x the
datacenter inference capacity compared to common computer
vision and natural language processing tasks [9]. As a result,
over 80% of machine learning inference cycles at Facebook’s
datacenter fleets are devoted to recommendation and ranking
inference [10]. Similar capacity demands can be found at
Google [11], Amazon [8], [12], and Alibaba [5], [6]. And

2Facebook Inc.

carolejeanwu@fb.com

— EEE Dense (MLP)
100 -

[Sparse (Embeddings)

Skylake Roofline
10° ¢ [
ResNet50|
Y 80
DeepSpeech2

—
o
~

60

GFLOPS

40

"
2

20 |

=
o
E}

Analytical Bytes Read Breakdown (%

0

10° 10t 102

L LS
<
Computational Intensity [FLOPS/byte] A

PRSI

Fig. 1: State-of-the-art recommendation models span diverse
performance characteristics compared to CNNs and RNNs.
Based on their use case, recommendation models have unique
architectures introducing model-level heterogeneity.

yet, despite their importance and the significant research on
optimizing deep learning based Al workloads [13]-[17] from
the systems and architecture community, relatively little atten-
tion has been devoted to solutions for recommendation [18].
In fact, deep learning-based recommendation inference poses
unique challenges that demand unique solutions.

First, recommendation models exhibit unique compute,
memory, and data reuse characteristics. Figure 1(a) compares
the compute intensity of industry-representative recommen-
dation models! [2]-[7], [10] to state-of-the-art convolutional
(CNN) [19] and recurrent (RNN) neural networks [20].
Compared to CNNs and RNNs, recommendation models,
highlighted in the shaded yellow region, tend to be mem-
ory intensive as opposed to compute intensive. Furthermore,
recommendation models exhibit higher storage requirements
(GBs) and irregular memory accesses [10]. This is because
recommendation models operate over not only continuous but
also categorical input features. Compared to the continuous
features (i.e., vectors, matrices, images), categorical features
are processed by inherently different operations. This unique
characteristic of recommendation models exposes new system
design opportunities to enable efficient inference.

Next, depending on the use case, major components of a
recommendation model can be sized differently [21]. This

ISection III describes the eight recommendation models in detail.

introduces model-level heterogeneity across the state-of-the-
art deep learning-based recommendation models. By focusing
on memory access breakdown, Figure 1(b) shows diversity
among recommendation models themselves. For instance,
dense feature processing that incregular memory accesses
dominate for Google's WnD [4], [7], NCF [2], Facebook's
DLRM-RMC3 [10], and Alibaba's DIEN [6]. In contrast,
categorical, sparse feature processing that incuegular
memory accesses dominate for other recommendation models
such as Facebook's DLRM-RMC1/RMC2 [10] and Alibaba's
DIN [5]. These diverse characteristics of recommendation

models expose system optimization design opportunities. Fig

2: General architecture of personalized recommendation

Finally, recommendation models are deployed across weRagels. Con guring the key parameters (red) yields different
services that require solutions to consider effects of exec““ﬁ‘ﬁplementations of industry-representative models.

at-scale in datacenters. For instance, it is commonly known
that requests for web-based services follow Poisson and log-
normal distributions for arrival and working set size respec-2)
tively [22]. Similar characteristics are observed for arrival
rates of recommendation queries. However, query working set
sizes for recommendation follow a distinct distribution with
heavier tail effects. This difference in query size distribution
leads to varying optimization strategies for at-scale inference.
Optimizations based on production query size distributions,
compared to log-normal, improve system throughput by up to
1.7 for at-scale recommendation inference.

To enable design optimizations for the diverse collection of
industry-relevant recommendation models, this paper presents
DeepRecInfra— an end-to-end infrastructure that enables
researchers to study at-scale effects of query size and aB)
rival patterns. First, we perform an in-depth characterization
of eight state-of-the-art recommendation models that cover
commercial video recommendation, e-commerce, and social
media [2], [4]-[7], [10]. Next, we prole recommendation
services in a production datacenter to instrument an inference
load generator for modeling recommendation queries.

Built on top of the performance characterization of the rec-
ommendation models and dynamic query arrival patterns (rate
and size), we propose a hill-climbing based scheduleeep-

by exploiting request batching (Section III).

We propose DeepRecSched- the rst batch-scheduler
that (a) partitions work across CPUs and accelerators
(GPU), (b) trades off batch- (data) and request- (task)
parallelism. DeepRecSched is tailor-designed to take into
account the dynamic query arrival patterns (rate and
size), recommendation model architectures, and service-
level latency targets (Section V). Evaluated with Dee-
pReclnfra, DeepRecSched doubles system throughput of
server class CPUs under strict latency targets. In addition,
we implement and evaluate the proposed design on a
production datacenter with live recommendation query
traf ¢, showing a 1.3 reduction in the tail latency.

We demonstrate that GPU accelerators can be appealing
for recommendation inference. Givaot all queries are
equalin recommendation inference, this paper shows that
the latency and throughput tradeoff between CPU and
GPU execution varies across different models, system
loads, and latency targets, highlighting the importance of
DeepRecSched's dynamism to determine optimal con g-
urations. We also show that, for recommendation infer-
ence, power ef ciency is not always optimal in the face
of GPUs, as compared to CPUs (Section VI).

RecSched- that splits queries into mini-batches based on the Systems research for personalized recommendation is still
query size and arrival pattern, the recommendation model, asichascent eld. To enable follow-on work, we hawopen

the underlying hardware platform. DeepRecSched maximizésurced the proposed DeepRecinfra infrastructureThis
system load under a strict tail-latency target by trading officludes the industry-representative neural recommendation
request versus batch-level parallelism. Since it is also impenodels, and at-scale query arrival rates and size distributions
tant to consider the role of hardware accelerators for at-scai@sented in this paper.

Al infrastructure ef ciency, DeepRecSched also evaluates the

impact of specialized hardware for neural recommendation by

emulating its behavior running on state-of-art GPUs.
The important contributions of this work are:

1) This paper describes a new end-to-end infrastructu
DeepReclnfra, that enables system design and optimi
tion across a diverse set of recommendation mode@l
DeepReclnfra integrates query arrival patterns and si
distributions, observed in a production datacenter.
highlight the importance of the unique query arrival an
size characteristics for at-scale recommendation inferenc

I[I. NEURAL RECOMMENDATION MODELS

Recommendation is the task of personalizing recommending
content based on a user's preferences. Recommendation is
used across many services including search, video and movie
Eontent, e-commerce, and advertisements. However, accurately
odeling preferences based on previous interactions can be
allenging because users only interact with a small subset of
f possible items. As a result, unlike inputs to traditional deep
ural networks (DNNS), inputs to recommendation models
glude bothdenseand sparsefeatures.

and identify a new performance optimization opportunity 2http://visiarch.eecs.harvard.edu/research/recommendation

Model Company Domain Dense-FC Predict-FC Embeddings
Tables | Lookup Pooling
NCF [2] - Movies 256-256-128 4 1 Concat
Wide&Deep [4] Google Play Store 1024-512-256 Tens 1 Concat
MT-Wide&Deep [7] | Youtube Video - N x (1024-512-256)| Tens 1 Concat
DLRM-RMC1 [10] | Facebook | Social Media| 256-128-32 256-64-1 10 80 Sum
DLRM-RMC2 [10] | Facebook| Social Media| 256-128-32 512-128-1 40 80 Sum
DLRM-RMC3 [10] | Facebook | Social Media| 2560-512-32 512-128-1 10 20 Sum
DIN [5] Alibaba E-commerce - 200-80-2 Tens | Hundreds| Attention+FC
DIEN [6] Alibaba E-commerce 200-80-2 Tens Tens Attention+RNN

TABLE I: Architectural features of state-of-the-art personalized recommendation models.

A. Salient Components in Neural Recommendation Modelsariety of recommendation use cases. In particular, Deep-

To accurately model user preference, state-of-the-art ré¢€cinfra consists of three important components: (1) a suite
ommendation models use deep learning solutions. Figure?pindustry-representative models, (2) industry-representative
depicts a generalized architecture of DNN-based recommél latency targets, and (3) real-time query serving based on
dation models with dense and sparse features as inputs. arrival rates apd Work.mg .set size dls_trlbut|0ns pro led from

Features. Dense features describe continuous inputs thitcommendation running in a production datacenter.
are processed with MLP layers i.e., fully-connected layers —
similar to classic DNN approaches. On the other hand, spase Industry-scale recommendation models
features represent categorical inputs, such as the collection

products a user has previously purchased. Since the number sent notable differences across their recommendation mod
interactions for a categorical feature is often small compargg3

to the feature's cardinality (all available products), the binargrcrE'zt]éc[tS]r_!s]hglorl. '-Ir;hlf' gige;agzidbfior;?;niﬁ'%n rg\oor:jel_
vector representing such interactions ends up very sparse. ectu wn In Figu u 1z y 9

Embedding Tables.Each sparse feature has a corresponafmg formative parameters in order to realize these different
ing embedding table that is composed of a collection of latelrr]r,gplementatlong. To capFure the diversity, DeepReclnfra com-
ses a collection of eight state-of-the-art recommendation

embedding vectors. The number of vectors, or rows in tﬁé)odels We describe the unique aspects of each model below
table, is determined by the number of categories in the givg}l : d P

feature — this can vary from tens to billions. The number (?fnd summarize their distinguishing parameters in Table I.
elements in each vector is determined by the number of lateniNeural Collaborative Filtering (NCF) generalizes ma-
features for the category representation. This latent dimensioffix factorization (MF) techniques proposed via the Net ix
is typically 16, 32, or 64. In total, embedding tables often Prize [23] [24] with MLPs and non-linearities. NCF im-
require up to tens of GBs of storage. plements one-hot encoded sparse features, four embedding
Embedding Table AccessWhile embedding tables them- tables, and MF based sparse pooling.
selves are dense data structures, embedding operations iMide and Deep (WnD) considers bottsparseand dense
cur sparse, irregular memory accesses. Each sparse inpiput features and is deployed in Google's Play Store [4].
is encoded either as one-hot or multi-hot encoded vectorsPense input features are directly concatenated with the out-
which are used to index speci ¢ rows of an embedding table.put of one-hot encoded embedding lookups and a relatively
The resulting embedding vectors are combined wigparse large Predict-FC stack produces output CTRs.
feature poolingoperation such as concatenation or sum. Multi-Task Wide and Deep (MT-WnD) extends WnD
Feature Interaction. The outputs of the dense and sparse by evaluating multiple output objectives including CTR,
features are combined before being processed by subsequeg@mment rate, likes, and ratings using a separate Predict-
predictor-DNN stacks. Typical operations for feature interac-FC stack for each objective. Leveraging multi-objective
tion include concatenation, sum, and averaging. modeling, MT-WnD enables a ner grained and improved
Product Ranking. The output of the predictor-DNN stacks user experience [25].
is the click through rate (CTR) probability for a single user- Deep Learning Recommendation Model (DLRM)is a
item pair. To serve relevant content to users, the CTR ofset of models from Facebook that differs from the afore-
thousands of potential items are evaluated for each user. Almentioned examples with its large number of embedding
CTR's are then ranked and the top-N choices are presentetpokups [3]. Based on the con gurations shown in [10]
to the user. As a result, deploying recommendation modelg/arying the number of lookups per table and size of FC
requires running the models with non-unit batch sizes. layers yield three different architectures, DLRM-RMC1,
DLRM-RMC2, and DLRM-RMC3.
1. Deep Interest Network (DIN) uses attention to model user
To better understand the distinct characteristics of andnterests. DIN does not consider dense input features but
design system solutions for neural recommendation modelshas tens of embedding tables of varying sizes. Smaller em-
we developed, DeepReclinfra, to model and evaluate at-scalbedding tables process one-hot encoded inputs while larger
recommendation inference. DeepReclinfra is implemented asnes (up to 1®rows) process multi-hot encoded inputs with
a highly extensible framework enabling us to consider ahundreds of lookups. Outputs of these embedding operations

(Zl%ecent publications from Google, Facebook, and Alibaba

D EEPRECINFRA: AT-SCALE RECOMMENDATION

_ _ . _ Fig. 4: Performance distribution of recommendation inference
Fig. 3: Queries for personalized recommendation models fei datacenter scale to individual machines. Individual machines
low a unique distribution not captured by traditional workloagbjlow inference distributions, excluding network and geo-

distributions (|e normal, Iog-normal) considered for Wekbraphic effects, at the datacenter scale to withi8%.
services. The heavy tail of query sizes found in production

recommendation services leads to unique design optimizatiogé.served depends heavily on users' interaction with the web-

are combined as a weighted sum by a local activation u§grvice, query sizes vary. While new hardware and software
(i.e., attention) and then concatenated [5]. optimizations are typically evaluated across an array of xed
Deep Interest Evolution Network (DIEN) captures evoly- Size batches, this isiot the same as optimizing systems
ing user interests over time by augmenting DIN with gatéahere batch-sizes vary dynamically (i.e., recommendation). To
recurrent units (GRUS) [6]. Inputs to the model are one-hftaximize ef ciency of systems with dynamic batch-sizes, is
encoded sparse features. Embedding vectors are procedsé@portant to optimize for the particular working set size

by attention-based multi-layer GRUSs. distribution (see Section IV).
_ _ _ Related work on designing system solutions for web ser-
B. Service level requirement on tail latency vices typically assumes working set sizes of queries follow a

Personalized recommendation models are used in makgd, normal, or log-normal distribution [22]. However, Fig-
Internet services deployed at a global scale. They must servite 3 illustrates that query sizes for recommendation exhibit
a large number of requests across the datacenter while meeé@rfgavier tail compared to canonical log-normal distributions.
strict latency targets set by the Service Level Agreementdus, while DeepReclinfra’'s load generator supports a variety
(SLAs) of various use cases. Thus, recommendation systedfiglistributions, the remainder of this paper uses the query
are optimized forlatency-bounded throughputeasured as Size distribution found in a production datacenter (Figure 3).
the queries per second (QPS) that can be processed under
a p95 tail-latency requirement. Across different application®. Subsampling datacenter eet with single-node servers

(e.g., search, social-media, e-commerce) we nd these latenCyr, serve potentially billions of users across the world,

targets vary signi cantly, which can result in distinct systemeommendation models are typically run across thousands of
design decisions. In this paper, we use the published targg{s-pines. However, it may not always be possible to deploy

and pro led model runtime to set the tail-latency target. Detailgegign optimizations across a production-scale datacenter. We
on these tail latency targets are available in Section V. g4y 3 handful of machines can be used to study and optimize

C. Real-Time Query Serving for Recommendation Inferendi&il performance of recommendation inference. Figure 4 shows

DeepRecinfra takes into account two important dimensioﬁ@e cumulative distribution of two different recommendation

of real-time query serving: arrival rate and working set sizegggﬁ!ﬁerunmg c;r(; Sti;\/ter'c-r?!aascfalggn?gglagglsnde?f;?%d;;ii
Query Arrival Pattern: Arrival times for queries for Ines. S P

S 0 S
datacenter services are determined by the inter-arrival tirg’éaCk) Is within 10% of the distribution measured on a

between consecutive requests. This inter-arrival time can O%nrg];unl dtgt'?naq:m‘l(ra]?esn((::ae?c.rg:susé tsaltfgfr;?yrrgfcnhqﬁefsorc;?"nc_be
modeled using a variety of distributions including uniform lon | u !

normal or Poisson distributions [22], [26]-[29]. Previous Wor&epresentatlve of larger scale systems.
has shown that, these distributions can lead to different syst
design optimizations [22], [29]. Following web-services, b
pro ling the statistical distribution of recommendation services To study at-scale characteristics of recommendation, it is
in a production datacenter, we nd that query arrival rateésportant to use representative infrastructure. This includes
follow a Poisson distribution [22], [26]-[28], [30]. representative models, query arrival rates, and query work-
Query Working Set Size Pattern: Not all recommendation ing set size distributions. Thus, we developed DeepReclnfra,
queries are created equallhe size of queries for recom-shown in Figure 5, by incorporating an extensible load gener-
mendation inference relates to the number of items to héor to model query arrival rate and size patterns for recom-
ranked for a given user. This translates to the amount wfendation use cases. This enables ef cient and representative
work per inference. Given the potential number of items tesign space exploration catered to at-scale recommendation.

. Putting it Altogether

Fig. 5: DeepReclnfra implements an extensible framework that considers industry-representative recommendation models, appli-
cation level tail latency targets, and real-time query serving (rate and size). Built upon DeepReclnfra, DeepRecSched optimizes
system throughput (QPS) under strict latency targets by optimzing per-request batch-size (request versus batch parallelism)
and accelerator query size threshold (parallelizing queries across specialized hardware).

DeepRecinfra is designed to enable future research tbreshold (i.e., of oading larger queries to specialized hard-
at-scale recommendation inference. First, model architectuvare). In order to tune these parameters across the diverse set
parameters are specied at the command line. This includet recommendation use cases, DeepRecSched implements a
parameters such as the width/depth of DNN layers, numbgh-climbing based scheduling policy. The scheduler provides
of continuous and categorical input features, number of rowas effective solution, given our observation of the convexity
and columns in embedding tables, number of sparse IDs pérbatch-size and accelerator partitioning problem, over more
lookup, and interaction operations between continuous aodmplex control theoretic approaches, such as PID [31], [32].
categorical input features. Next, given the example implemeWe motivate the need for automated solutions given the
tations, additional recommendation models can be added to #pparent model diversity (Section IV-A), optimize batch versus
infrastructure. Finally, to model various at-scale effects, useexqjuest parallelism (Section IV-B), and modulate the query
can con gure the degree of model co-location, tail latencygf oading degree for specialized hardware (Section IV-C).
targets, and query arrival rates and sizes. Figure 5 illustrates the proposed DeepRecSched design in

the context of DeepReclInfra.
IV. DEEPRECSCHED DESIGN P

In this section, we present the design, implementation, afid Model diversity demands exible optimization
evaluation of the proposed design — DeepRecSched— a recom-The apparent diversity of the industry-representative rec-
mendation inference scheduler that optimizes latency-boundedmendation models leads to varying, unique performance
throughput for at-scale execution. Central to DeepRecSchedattlenecks. Figure 6 compares the performance characteristics
the observation that working set sizes for recommendatiof recommendation models running on a server class Intel
queries follow a unique distribution with a heavy tail. InBroadwell, shown as fractions of time spent on Caffe2 opera-
tuitively, large queries limit the throughput (QPS) a systeiors for a xed batch size of 64. As expected, inference runtime
can handle given a strict latency target. DeepRecSchedfas models with high degrees of dense feature processing (i.e.,
tailor-designed to address this bottleneck with two desigpLRM-RMC3, NCF, WND, MT-WND) is dominated by the
optimizations. First is exploiting batch (data) versus requesiLP layers. On the other hand, inference runtime for models
(task) level parallelism. This is accomplished by splitting larggominated by sparse feature processing (i.e., DLRM-RMC1
queries into multiplerequestsof smaller batch sizerequests and DLRM-RMC2) is dominated by embedding table lookups.
are processed by parallel cores. This requires carefully balanc-
ing batch-level and SIMD-level parallelism, cache contention, Interestingly, inference runtime for attention based recom-
and the potential increase in queuing delay from a largarendation models is dominated by neither FC nor embedding
number of smaller-sized requests. Second, large queries fatde operations. For instance, inference run time for DIN is
of oaded to specialized Al hardware in order to acceleratgplit between concatenation, embedding table, sum, and FC
at-scale recommendation inference. The decision to of oaperations. This is a result of the attention units, which (1)
gueries onto specialized Al hardware must carefully balancencatenate user and item embedding vectors, (2) perform a
data communication costs, and parallelism across both serserall FC operation, and (3) use the output of the FC operation
class CPU cores and the accelerator for each model. to weight the original user embedding vector. Similarly, the

DeepRecSched optimizes system throughput across #xecution time of DIEN is dominated by recurrent layers. This
large and complex design space of recommendation use cdses result of fewer embedding table lookups whose outputs
encompassed by DeepReclinfra (i.e., models, latency target® processed by a series of relatively large attention layers.
query serving, hardware platforms). This is accomplished by This design space is further expanded considering the
tuning the per-core batch-size (i.e., balancing batch verdusterogeneity of CPUs found in production datacenters [9].
request-level parallelism on CPUs) and accelerator query sRecent work shows recommendation models are run on a

Fig. 6: Operator breakdown of state-of-the-art personalized
recommendation models with a batch-size of 64. The large
diversity in bottlenecks leads to varying design optimizations.

Fig. 8: Optimal request vs. batch parallelism varies based
on the use case. Optimal batch-size varies across latency
targets for DLRM-RMC (top) and models (bottom) i.e.,
i.e., DLRM-RMC2 (embedding-dominated), DLRM-RMC3
(MLP-dominated), DIEN (attention-dominated).

B. Optimal batch size varies

While all queries can be processed by a single core,
Fig. 7: Performance of WnD, DIN, and DLRM-RMC3 on.spl|tt|ng gueries across cores to exploit hardware parallelism,

Broadwell and Skylake, using AVX-2 and AVX-256 support!s often advantageous. Thus, DeepRecSched splits queries into

" . individual requestsHowever, this sacri ces parallelism within
Performance variation across hardware platforms is due 1§ 9 P

difference in micro-architectural features such as SIMD-Widl‘ﬁ, request \.N'th a decrea'sbdtch siz€ .
cache capacity, and clock frequency. The optimal batch size that maximizes the system QPS

throughput varies based on (1) tail latency targets and (2)
recommendation models. Figure8 shows the achievable system
variety of server class CPUs such as Intel Broadwell armdroughput (QPS) as we vary the per-core batch-size. Recall
Skylake [10]. While, Broadwell implements CPUs running ahat small batch-sizes (request parallelism) parallelizes a single
2.4GHz with AVX-256 SIMD units and inclusive L2/L3 cachequery across multiple cores while larger batch-sizes (batch
hierarchies, Skylake cores run at 2.0GHz with AVX-512 unitgarallelism) processes a query on a single core. Figure 8
and exclusive caches with a larger effective cache capacifp) illustrates that, for DLRM-RMC3, the optimal batch size
Figure 7 shows the impact of CPU micro-architecture ofcreases from 128 to 256 as the tail latency target is relaxed
neural recommendation inference performance. We show #iagm 66ms(low) to 100ns(medium). (See Section V for more
performance of WnD, DIN, and DLRM-RMC2 on Broadwelldetails on tail-latency targets.) Furthermore, Figure 8(bottom)
(BDW), as well as Skylake using both AVX-256 (SKL-shows that the optimal batch size for DIEN (attention-based),
AVX2) and AVX-512 (SKL-AVX512) instructions. Given the DLRM-RMC3 (FC heavy), and DLRM-RMC1 (embedding
xed operating frequency and cache hierarchy between SKtable heavy) is 64, 128, and 256, respectively.

AVX2 and SKL-AVX512, the 3.0 performance difference Note that the design space is further expanded when op-
for WnD can be attributed to the better utilization of th@imizing across the heterogeneous hardware platforms [9].
SIMD units. Similarly, given the xed SIMD width, the 1.3 Following Figure 7, micro-architectural features across these
performance difference between BDW and SKL-AVX2 is @ervers can impact the optimum tradeoff between request- and
result of the larger L2 caches that help accelerate the Congafch-level parallelism. For example, higher batch sizes are

operator with highly regular memory access pattern. Finalliypically required to exploit the bene ts of the wider SIMD
the performance difference between BDW and SKL-AVXZnits in Intel Skylake [10]. Next, while inclusive cache (i.e.,

instructions on DLRM-RMC2 is attributed to a 20% diﬁerenc%roadwe”) hierarchies s|mp||fy cache coherence protoco|s,
in core frequency accelerating the embedding table operatiofifey are more susceptible to cache contention and performance
Given the variety of operator and system bottlenecks, aegradation from parallel cores [33], [34]. In the context of
important design feature of DeepRecSched is to automaticaljcommendation, this can be achieved by trading off request
optimize request- versus batch-level parallelism and leveraf batch parallelism. Section VI provides a more detailed
parallelism with specialized hardware. analysis into the implication of hardware heterogeneity on

Fig. 9: GPU speedup over CPU for representative recommendation models. The batch-size at which GPUs start to outperform
CPUs and their speedup at large batch-sizes varies across models.

trading off request- versus batch-level parallelism. Trading off processing queries on CPUs versus GPUs re-
quires careful optimization. Intuitively, of oading queries to
C. Leverage parallelism with specialized hardware the GPU incurs signi cant data transfer overheads. To amortize

glnis cost, GPUs often require larger batch sizes to exhibit

. : I dup over CPUs, as shown in Figure 9 [35]. Consequently,
lelism on general purpose CPUs, in the presence of speciali §° . ;
Al hardwgre, DeeF;))chSched improvespsystem throupghput eepRecSched improves system throughput by of oading the

of oading queries that can best leverage parallelism in tﬂg‘,geSt queries for recommendation inference to the GPU.

In addition to balancing request- versus batch-level par

: o is can be accomplished by tuning theery-sizethreshold.
labl I h . Wi I he role of =2 .
available specialized hardware. We evaluate the role of acq ueries larger than this threshold are of oaded to the GPU

erators with state-of-the-art GPUs. .
Figure 9(top) illustrates the speedup of GPUs over a CFWJ1|Ie smaller ones are processed on CPU cores.
Figure 11 illustrates the impact of query-size threshold (x-

(single threaded) across the recommendation models at various th hievable OPS . oty of
batch sizes. For each model, we illustrate the relative perf&x's) on the achievable QPS (y-axis) across a variety of rec-

mance of GPUs over CPUs at a unit batch-size, the batch—s%gmendation mgdﬁls. Th%OFtigig&r(ﬁaﬂg V;E;T\Aag&scslthe
required to outperform CPU-only hardware platforms, and 4 ¢ ccommencation moadels, j :) '

large batch-size of 1024. Given the higher compute intens hd DIEN. In fact, we nd that the threshold n_ot only varies
and memory bandwidth, GPUs provide signi cant perfo across model architectures, but also across tail latency targets.

r) . .
mance bene ts at higher batch sizes — especially for compd\lé)te’ the optimal query size thresholds take into account the

: : . i king set distribution found in Figure 3. Compared
intensive models. However, across the different classes ééﬁ‘am'c Workl .
the batch-size at which the GPU demonstrates speedup over

recommendation models, there is large variation in (1) speeol\%p) . ;
; ; . . the CPU (Figure 9), the optimal query-size threshold for both
at large batch sizes (i.e. 1024) and (2) batch size required RM-RMC1 and DIEN are higher — 47 vs. 320 for DLRM-

outperform CPU-only hardware platforms vary widely. Th'%MCl and 101 vs. 512 for DIEN. Thus, systems that optimize

is due to the overhead of transferring inputs from the CP o) -
to the GPU, which consumes a signi cant fraction of timerecommendatlon inference by of oading work to specialized

For instance, as shown in Figure 9(bottom), across all bat’é‘h accellerators must consider the dynamic working set sizes
sizes, data loading time consumes on averageS69 of the a salient feature of DeepRecSched.
end-to-end inference time on the GPU for all models. .

In addition to considering performance characteristics 8% DeepRecSched Design Summary
recommendation models on standalone systems, it is importanRecall that production datacenters run a variety of rec-
to analyze the impact of the dynamic query working setmmendation models that evolve over time across hetero-
size distributions. Figure 10 illustrates the execution timgeneous hardware platforms with varying SLA targets [9].
breakdown for queries smaller than the ¥&§ze versus larger Thus, automated solutions are needed to optimize batch- and
gueries. Despite the long tail, the collection of small querieequest-level parallelism, and of oading inference queries to
constitute over half the CPU execution tin25% of large specialized hardware. We tailor-design DeepRecSched for at-
gueries contribute to nearly 50% of total execution tiffikis scale recommendation inference. For example, given the con-
unique query size distribution with a long tail makes GPUs arexity of the batch-size and accelerator of oading optimization
interesting accelerator target. Figure 10 shows that, acrosspadblem seen in Figure 8 and Figure 11, DeepRecSched im-
models, GPU can effectively accelerate the execution time giEments a hill-climbing based algorithm. Compared to more
large queries. While of oading the large queries can redu@®mplex control-theoretic approaches, such as PID controllers,
execution time, the amount of speedup varies based on tik-climbing offers a simple, scalable, and effective solution.
model architecture. The optimal threshold for of oading variek fact, we demonstrate the ef cacy of DeepRecSched, by not
across models, motivating a design that can automatically tumay evaluating it using DeepReclnfra but also deploying it in
the of oading decision for recommendation inference. a real production datacenter eet (see Section VI for details).

Model Runtime Bottleneck SLA target
DLRM-RMC1 Embedding dominated 100ms
DLRM-RMC2 Embedding dominated 400ms
DLRM-RMC3 MLP dominated 100ms

NCF MLP dominated 5ms
WND MLP dominated 25ms
MT-WND MLP dominated 25ms
DIN Embedding + Attention dominated 100ms

DIEN Attention-based GRU dominated 35ms

) _) _ TABLE Il: Summarizing performance implications of differ-
Fig. 10: Aggregated execution time over the query set basggh personalized recommendation and latency targets used to

on the size distribution for CPU and GPU. GPUs readilyj strate design space tradeoffs for DeepRecSched.
accelerate larger queries; however, the optimal in ection point

and speedup differ across models. for GPUs [37]. All CPU experiments are conducted with

a single Caffe2 worker and Intel MKL thread.

SLA Latency Targets: Table Il presents the tail latency

targets for each of the recommendation models [4]-[7], [10].

For instance, the Google Play store imposes an SLA target of

tens of milliseconds on WnD [4], [11]. On the other hand,

Facebook's social media platform requires DLRM-RMC1,

DLRM-RMC2, and DLRM-RMC3 have an SLA target

of hundreds of milliseconds [10]. Alibaba's e-commerce

platform requires DIN and DIEN have an SLA target of tens

of milliseconds [5], [6]. To explore the design tradeoffs over
Fig. 11: The optimal query size threshold, and thus fraction ofa range of latency targets, we consider three latency targets
queries processed by the GPU, varies across recommendatidor each model —Low, Medium andHigh — where Low
models i.e., DLRM-RMC2 (embedding-dominated), DLRM- and High tail latency targets are set to be 50% lower and
RMC3 (MLP-dominated), DIEN (attention-dominated). 50% higher than that of Medium, respectively.

Real-Time Query Patterns: Query patterns in DeepRecin-

. . . fra ar n gurable on two axes: arrival r nd size. Th
Given a particular recommendation model, hardware plat- a are congu _abe on t 0 axes. arriva _ate and size ‘he
arrival pattern is t to a Poisson distribution whereas sizes

form, and tail latency target, DeepRecSched rst tunes the d ¢ h duction distributi Fi 3
tradeoff between batch- versus request-level parallelism. Star2'€ drawn from ihe production distribu ion (Figure 3).

ing with a unit batch-size, DeepRecSched gradually increasegxperimental System Setup.To consider the implications
the per-core batch-size in order to optimize system throughpat.hardware heterogeneity found in datacenter [9], [10], [38],
Note that DeepRecSched is designed to perform the hille evaluate DeepRecSched with two generations of dual-
climbing based optimization during the initial warm up periogocket server-class Intel CPUs: Broadwell and Skylake. Broad-
of launching a service. DeepRecSched then tunes the quemg!l comprises 28 cores running at 2.4GHz with AVX-2 SIMD
size threshold for of oading queries to specialized hardwargnits and implements an inclusive L2/L3 cache hierarchy. Its
Starting with a unit query-size threshold (i.e., all queries afDP is of 120W. Skylake comprises of 40 cores running
processed on the accelerator), DeepRecSched again appiie8.0GHz with AVX-512 SIMD units and implements an
hill-climbing to gradually increase the threshold until thexclusive L2/L3 cache hierarchy. Its TDP is of 125W.
achievable QPS degrades. As what Section VI later shows;To consider the implications of Al hardware accelerators,
by automatically tuning the per-request batch size and GRi¢ extend the design space to take into account a GPU
query-size threshold, DeepRecSched optimizes infrastructakelerator model based on real empirical characterization.
efciency of at-scale recommendation across a variety afhe accelerator performance model is constructed with the
different model architectures, tail latency targets, query-siperformance pro les of each recommendation model across
distributions, and the underlying hardware. the range of query sizes over a real-hardware GPU — server-
class NVIDIA GTX 1080Ti with 3584 CUDA cores, 11GB of
DDR5 memory, and optimized cuDNN backend library (see
We implement and evaluate DeepRecSched with Deepigure 9). This includes both data loading and model computa-
Reclnfra across a variety of different hardware systems afion [39]-[44], capturing the performance-critical components
platforms. We then compare the performance and powsgfthe end-to-end recommendation inference.
ef ciency results with a production-scale baseline. Production-scale baselineWe compare DeepRecSched to
DeepRecinfra comprises three notable components: the baseline that implements a xed batch size con guration.
Model Implementation: We implement all the recommenFhis xed batch size con guration is typically set by splitting
dation models (Table 1) in Caffe2 with Intel MKL as thethe largest queryevenly across all available cores on the
backend library for CPUs [36] and CUDA/cuDNN 10.lunderlying hardware platform. Given the maximum query

V. METHODOLOGY

Fig. 12: Compared to a static scheduler based on production recommendation services, the top gure shows performance,
measured in system throughout (QPS) across a range of latency targets, while the bottom shows power ef ciency (QPS/Watt),
for DeepRecSched-CPU and DeepRecSched-GPU.

size of 1000 (Figure 3), the static batch size con guratioeach latency target. Compared to the performance improve-
is determined as 25 for a server-class 40-core Intel Skylakenent, DeepRecSched-GPU provides marginal improvement in
power efciency due to the overhead of GPU acceleration.
VI. DEEPRECSCHED EVALUATION In fact, while DeepRecSched-GPU improves system QPS
This section presents the performance and power efcross all recommendation models and latency targets, com-
ciency improvements of DeepRecSched running on CPBared to DeepRecSched-CPU, it does not globally improve
(DeepRecSched-CPU) and GPUs (DeepRecSched-GPU) dw&S/Watt. In particular, the power ef ciency improvement of
the baseline across a vast and complex design space, includ}¢§PRecSched-GPU is more pronounced for compute inten-
all eight state-of-the-art recommendation models using Deegive models (i.e., WND, MT-WND, NCF). On the other hand,
Reclnfra. Next, we detail the bene ts of DeepRecSched B9r memory intensive models (i.e., DLRM-RMC1, DIN), the
diving into (1) request- versus batch-level parallelism, (Bower overhead for of oading recommendation inference to
a case study of demonstrating the optimizations in a rdaPUs outweighs the performance gain, degrading the overall
production datacenter, and (3) parallelization opportunities Bewer ef ciency. Thus, judicious optimization of of oading
of Oading requests to Specia”zed hardware. queries across CPUs and specialized Al hardware can improve
Performance. Figure 12(top) compares the throughput pe,infrastructure ef ciency for recommendation at-scale.
formance of DeepRecSched-CPU and DeepRecSched-GPU .
versus a baseline static scheduler across the three tail |ateﬁc>)3alance of Request and Batch Parallelism
con gurations, all normalized to the measured QPS atiohe Here we take a deep into how DeepRecSched-CPU im-
tail latency case of the baseline. Overall, DeepRecSched-Cptdves QPS by balancing request- versus batch-level par-
achieves 1.7, 2.1 , and 2.7 higher QPS across all modelsallelism across varying (1) latency targets, (2) query size
for thelow, medium andhigh tail latency targets, respectively.distributions, (3) models, and (4) hardware platforms.
DeepRecSched-CPU is able to increase the overall systen®ptimizing across SLA targets.Figure 13(a) illustrates the
throughput by optimizing batch size con guration. Furthertradeoff between request- and batch-level parallelism across
more, DeepRecSched-GPU increases performance improvarying tail latency targets for DLRM-RMC1. Under lower,
mentto 4.0 ,5.1 ,and 5.8 atthelow, mediumandhightail stricter tail latency targets, QPS is optimized at lower batch
latency targets, respectively. Thus, parallelizing requests acreszes — favoring request level parallelism. On the other
general-purpose CPUs and specialized hardware provides laad, at more relaxed tail latency targets, DeepRecSched-CPU
ditional performance improvement for recommendation. nds the optimal con guration to be at a higher batch size
Power ef ciency. Figure 12(bottom) compares the QPS— favoring batch-level parallelism. For instance, using the
per-watt power efciency of DeepRecSched-CPU angroduction working set size distribution, the optimal batch-size
DeepRecSched-GPU by again normalizing the measurdtarget tail latencies of &@sand 12@nsare 128 and 1024
QPS/Watt to thdow tail latency case of the baseline staticespectively. Intuitively, this is a result of achieving overall
scheduler. Given higher performance under the TDP powagher system throughput with larger batch-sizes at more
budget as the baseline, DeepRecSched-CPU achieves 1.r&laxed latency targets. As shown in Figure 12(top), optimizing
2.1 , and 2.7 higher QPS/Watt for all models under thethis per-request batch size yields DeepRecSched-CPU's QPS
low, medium and high tail latency targets, respectively. Ag-improvements over the static baseline across latency targets.
gregated across all models, DeepRecSched-GPU improves th®ptimizing across query size distributions Figure 13(a)
power ef ciency improvement to 2, 2.6 , and 2.9 for also shows the optimal batch size, for DLRM-RMC1, varies

Fig. 13: Exploiting the unique characteristics of at-scale recommendation yields ef ciency improvements given the optimal
batch size varies across SLA targets and query size distributions (left), models (middle), and hardware platforms (right).

across query working set size distributions (lognormal arsthows the optimal batch size, for DLRM-RMC3, varies across
the production distribution). The optimal batch-size across aérver architectures (Intel Broadwell and Skylake machines).
tail latency targets is strictly lower for lognormal than th&he optimal batch size, across all tail-latency targets, is strictly
query size distribution found in production recommendatiomgher on Intel Broadwell compared to Skylake. For example,
use cases. This is a result of, as shown in Figure 3, quextya latency target of 1ms the optimal batch-size on Intel
sizes in production recommendation use cases followingBaoadwell and Skylake is 1024 and 256, respectively. This is
distribution with a heavier tail. In fact, applying optimala result of the varying cache hierarchies on the two platforms.
batch-size con guration based on the lognormal query size particular, Intel Broadwell implements an inclusive L2/L3
distribution to the production distribution degrades the perfocache hierarchy while Intel Skylake implements an exclusive
mance of DeepRecSched-CPU by 1,21.4 , and 1.7 at L2/L3 cache hierarchy. As a result, Intel Broadwell suffers
low, medium, and high tail-latencies for DLRM-RMC1. Thusfrom higher cache contention with more active cores leading
built ontop of DeepReclInfra, DeepRecSched-CPU carefully performance degradation. For example, at a latency target of
optimizes request verus batch-level parallelism for recommeh#5msand per-request batch sizes of 16 (request-parallel) and
dation inference in production datacenters. 1024 (batch-parallel), Intel Broadwell has an L2 cache miss
Optimizing across recommendation modelsFigure 13(b) rate of 55% and 40% respectively. To compensate for this per-
illustrates that the optimal batch size varies across recommé&ymance penalty, DeepRecSched-CPU runs recommendation
dation models with distinct compute and memory characténodels with higher batch-sizes — fewer request and active
istics. Here, we consider two compute intensive models (e.gores per query — on Intel Broadwell.
DLRM-RMC3, WnD) and two memory intensive models (e.g., Overall, DeepRecSched enables a ne balance between
DLRM-RMC1, DIN). We nd that compute intensive modelsrequest vs. batch-level parallelism across not only varying tail
are typically optimized with lower batch-sizes as compardatency targets, query size distributions, and recommendation
to memory intensive models. For example, at the high SLmodels, but also the underlying hardware platforms.
targets, DLRM-RMC3 and WnD have an optimal batch size of
256 and 128, respectively. On the other hand, DLRM-RMJ3. Tail Latency Reduction for At-Scale Production Execution

and DIN are optimized ata Ia_rger batch siz<_a of 1024. This is Following the evaluations using DeepReclnfra, we deploy
a result of the compute |nt.ens.|ve models be'lng accelerated{jy proposed design and demonstrate that the optimizations
the data-parallel SIMD units (i.e., AVX-512 in Intel Skylakeransiate to higher performance in a real production datacenter.
AVX-256 in Intel Broadwell). Thus, throughput for computerigyre 14 illustrates the impact of varying the batch-size on
intensive models is maximized by fully utilizing the dataihe measured tail latency of recommendation models running
parallel SIMD units and parallelizing queries into multiple,, 5 production datacenter. Experiments are conducted using
requests across the chip-multiprocessor cores. production A/B tests with a portion of real-time datacenter
While higher throughput is achieved at smaller batchrafc to consider end-to-end system effects including load-
sizes for compute intensive models, memory intensive modelglancing and networking. The A/B tests run on a cluster
require larger batch sizes. This is because the primary pgf-hundreds of server-class Intel CPUs running a wide col-
formance bottleneck of models with heavy embedding tabigction of recommendation models used in the production
accesses lies in the DRAM bandwidth utilization. In ordegatacenter eet. The baseline con guration is a xed batch-
to saturate, and fully utilize, the per-core memory bandize, deployed in a real production datacenter eet, set coarsely
width, memory intensive recommendation models must lgtimizing for a large collection of models. Optimizing the
run with higher batch-sizes. Thus, in addition to request levghtch- versus request-parallelism at a ner granularity, by
parallelism, memory bandwidth utilization can be improveghking into account particular model architectures and hard-
signi cantly by running recommendation inference at a highegare platforms, enables further performance gains. To enable
batch size. By exploiting characteristics of the models to opthis ner granularity optimization and account for the diurnal
mize the per-request batch size, DeepRecSched-CPU achig#@sluction traf ¢ asf well as intra-day query variability, we
higher QPS across the various recommendation models. deploy and evaluate DeepRecSched over the course of 24
Optimizing across hardware platforms. Figure 13(c) hours. Compared to the baseline con guration, the optimal

10

	Introduction
	Neural recommendation models
	Salient Components in Neural Recommendation Models

	DeepRecInfra: At-scale Recommendation
	Industry-scale recommendation models
	Service level requirement on tail latency
	Real-Time Query Serving for Recommendation Inference
	Subsampling datacenter fleet with single-node servers
	Putting it Altogether

	DeepRecSched design
	Model diversity demands flexible optimization
	Optimal batch size varies
	Leverage parallelism with specialized hardware
	DeepRecSched Design Summary

	Methodology
	DeepRecSched Evaluation
	Balance of Request and Batch Parallelism
	Tail Latency Reduction for At-Scale Production Execution
	Leverage Parallelism with Specialized Hardware
	Datacenter provisioning implications.

	Related Work
	Conclusion
	Acknowledgements
	References

