DNN ENGINE:
A 16nm Sub-uJ DNN Inference Accelerator
for the Embedded Masses

Paul N. Whatmough¹,²
S. K. Lee², N. Mulholland², P. Hansen², S. Kodali³, D. Brooks², G.-Y. Wei²

¹ARM Research, Boston, MA
²Harvard University, Cambridge, MA
³Princeton University, NJ
The age of deep learning

Deeper Nets

More Compute

Bigger Data

IMAGENET
The embedded masses

- Interpret noisy real-world data from sensor-rich systems
- Keep inference at the edge: always-on sensing
- Large memory footprint and compute load
DNN inference at the edge

Raw Data → Pre-Processing → Norm. Data → Feature Extraction → Features → Classifier → Classes

- Normalize
 mean=0, variance=1

- FFT, MFCC, Sobel, HOG, etc

- Fully-connected Deep neural network (DNN)
DNN classifier design flow

• Data
 - Training, validation, test

• Training
 - Optimize hyper-parameters
 - Minimize size and test error

• Quantization
 - Fixed-point 8-bit / 16-bit

• Inference
 - CPU, DSP, GPU, Accelerator

[Reagen et al., ISCA 2016]
DNN ENGINE accelerator architecture

- Parallelism and data reuse
- Sparse data and small data types
- Algorithmic resilience
Outline

- Background and motivation

- DNN ENGINE
 - Parallelism and data reuse
 - Sparse data and small data types
 - Algorithmic resilience

- Measurement Results

- Summary
Fully-connected DNN graph
Fully-connected DNN graph
Fully-connected DNN graph

Process a group of neurons in parallel
Fully-connected DNN graph

Re-use of activation data across neurons
Fully-connected DNN graph
Fully-connected DNN graph
Fully-connected DNN graph
Fully-connected DNN graph

Add bias and apply activation function
Fully-connected DNN graph
Fully-connected DNN graph
Fully-connected DNN graph
Balancing efficiency and bandwidth

- Parallelism increases throughput and data reuse
Balancing efficiency and bandwidth

- Parallelism increases throughput and data reuse
 - But also increases Memory Bandwidth demands
Balancing efficiency and bandwidth

- Parallelism increases throughput and data reuse
 - But also increases Memory Bandwidth demands
- 8-Way SIMD is efficient at reasonable memory BW
 - 10x Activation reuse, with 128b AXI channel
DNN ENGINE micro-architecture

8-Way SIMD accelerator architecture
DNN ENGINE micro-architecture

Host Processor loads configuration and input data
DNN ENGINE micro-architecture

Accumulate products of Activation and Weights
DNN ENGINE micro-architecture

Add bias, apply ReLU activation and writeback
DNN ENGINE micro-architecture

IRQ to host, which retrieves output data
Outline

- Background and motivation

- DNN ENGINE
 - Parallelism and data reuse
 - Sparse data and small data types
 - Algorithmic resilience

- Measurement Results

- Summary
Exploiting sparse data
Exploiting sparse data

Discard small activation data
Exploiting sparse data

Dynamically prune graph connectivity
Exploiting sparse data
Exploiting sparse data
Exploiting sparse data
Exploiting sparse data

Discard small activation data
Exploiting sparse data

Dynamically prune graph connectivity
Exploiting sparse data
Exploiting sparse data

Input Vector

Output Classes
Exploiting sparse data

Input Vector

Output Classes
Exploiting sparse data
DNN ENGINE micro-architecture
DNN ENGINE micro-architecture
DNN ENGINE micro-architecture

W-MEM supports 8b or 16b data types
Outline

- Background and motivation

- DNN ENGINE
 - Parallelism and data reuse
 - Sparse data and small data types
 - Algorithmic resilience

- Measurement Results

- Summary
DNN ENGINE micro-architecture

[Whatmough et al., ISSCC’17]
Timing error tolerance

MNIST @ 98.36% Accuracy

Timing Violation Rate

- Memory
- Datapath
- Combined

[Whatmough et al., ISSCC’17]
Outline

- Background and motivation

- DNN ENGINE
 - Parallelism and data reuse
 - Sparse data and small data types
 - Algorithmic resilience

- Measurement Results

- Summary
16nm SoC for always-on applications
16nm SoC for always-on applications
Measured energy for always-on applications

- Nominal Vdd / signoff Fmax
- Energy varies with application
 - Exponential with accuracy
- On-chip memory critical
 - A few KBs from DRAM >1uJ
 - Constrains model size

- 2.5x energy
- 0.3% accuracy
Measured energy improvement

- Joint architecture and circuit optimizations
- Typical silicon at room temp
- Measurements demonstrate
 - 10x energy reduction
 - 4x throughput increase
State of the art classifiers

- Dedicated NN accelerators
 - Different performance points
 - Different technologies

- Accuracy critical metric
 - Linear classifier 88%
 - Exponential cost

- The next 10x improvement
 - Algorithm innovations?
Summary

- Inference moving from cloud to the device: always-on sensing
- DNN ENGINE architecture optimizations
 - Parallelism and data reuse
 - Sparse data and small data types
 - Algorithmic resilience
- 16nm test chip measurements
 - Critical to store the model in on-chip memory
 - 10x energy and 4x throughput improvement
 - 1uJ per prediction for always-on applications

We are grateful for support from DARPA CRAFT and PERFECT projects